Gartner recently released their Market Guide for AIOps Platforms, which discusses what the AIOps software marketplace looks like and how Gartner believes Infrastructure and Operations (I&O) leaders should begin implementing their AIOps deployments over the next five years.
AIOps stands for Artificial Intelligence for IT Operations. AIOps refers to multi-layered technology platforms that automate and enhance IT operations by using analytics and machine learning to analyze big data collected from various IT operations tools and devices. AIOps platforms help IT Ops departments automatically spot, react to, and report on IT Ops issues in real time. Check out our primer on what AIOps is for more information on the AIOps platform, what’s driving it, and the big advantages for AIOps implementation.
Gartner estimates that only 5% of all large enterprises are currently combining big data and machine learning (the heart of an AIOps platform) to support and partially replace monitoring, service desk, and automation processes and tasks. However, Gartner expects that number to jump to 40% of all large enterprises by 2022. If this prediction comes true, AIOps will create a massive shift in IT Operations methodology and spending, and it benefits everyone to understand what vendors, products, and services make up the AIOps marketplace.
When looking for products in the AIOps marketplace, it helps to remember that AIOps is a multi-layered platform consisting of the elements shown in figure 1.
Figure 1: The technology layers that make up an AIOps platform
Remember: the goal of an AIOps implementation is to gather and consolidate operational information into a big data platform, and then use analytics and machine learning to identify, react to, and report on IT issues in real time. In their Market Guide for AIOps Platforms, Gartner classifies AIOPS products supporting that goal into eleven different categories, including:
Each of these categories fits into and supports one or more of the AIOps technology listed in figure 1. There are several different vendors who provide AIOps enabling software, including BMC, IBM, SAP, Splunk, and others. Like most software categories, not every vendor provides products in each category and it’s best to look at the vendor’s full range of AIOps offerings and consider future needs as you start deploying your own AIOps platform. A good starter list of AIOps vendors and the AIOps software categories they provide is included in Gartner’s Market Guide for AIOps Platforms.
In addition to describing the AIOps categories and providing a starter list of vendor who provide products in each category, Gartner also offers the following recommendations for getting started with AIOps (note: I’m paraphrasing their recommendations. See the Market Guide for their full recommendations).
Per Gartner, deploying AIOps in an IT Operations environment is difficult and must be approached gradually. Organizations should resist the temptation to try implementing all AIOps functionality at once. Rather, they should first concentrate on visualization and statistical analysis. After becoming adept at visualization and statistical analysis, you can move on to the other three phases in sequence. Similar to the old saw about how you eat an elephant (one bite at a time), you should build your AIOps solutions and environment one bite at a time to ensure long-term success. Be sure to look for tools that can modularly deploy solutions in all machine learning phases, so you can build up your solutions and obtain additional value as you learn.
AIOps is a rising and important platform in the IT Operations world. It’s important to get familiar with the concepts, software, and vendors who will control this marketplace, because if you’re in a medium to large IT organization, chances are good you’ll be looking at AIOps deployment within the next five years.