
TUNING MACHINE LANGUAGE MODELS FOR ACCURACY

Conti
nuing with our explanations of how to measure the accuracy of an ML model, here we discuss two
metrics that you can use with classification models: accuracy and receiver operating characteristic

https://dev.blogs.bmc.com/blogs/bias-variance-machine-learning/
https://dev.blogs.bmc.com/blogs/bias-variance-machine-learning/
http://scikit-learn.org/stable/modules/model_evaluation.html#roc-metrics
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html#sklearn.metrics.accuracy_score

area under curve. These are some of the metrics suitable for classification problems, such a logistic
regression and neural networks. There are others that we will discuss in subsequent blog posts.

For data, we use this this data set posted by an anonymous statistics professor. The Zeppelin
notebook for the code shown below is stored here.

The Code
We use Pandas and scikit-learn to do the heavy lifting. We read the data into a dataframe then take
two slices, x is columns 2 through 16. x is the column labeled 'Buy'. Since this is a logistic regression
problem y is equal to either 1 or 0.

import pandas as pd

url =
'https://raw.githubusercontent.com/werowe/logisticRegressionBestModel/master/
KidCreative.csv'

data = pd.read_csv(url, delimiter=',')

y=data
x = data.iloc

Next we use two of the classification metrics available to us: accuracy and roc_auc. We explain
those below.

First, we can comment on cross-validation, used in the algorithm below. We use
model_selection.cross_val_score with cv=kfold. Basically, what this does is test predictions against
observed values by looping over different divisions of the input data and taking the average of the
area. This is helpful mainly with small data sets when you don't have enough training data to split it
into test, training, and validation sets.

from sklearn import model_selection
from sklearn.linear_model import LogisticRegression

for scoring in:
 seed = 7
 kfold = model_selection.KFold(n_splits=10, random_state=seed)
 model = LogisticRegression()
 results = model_selection.cross_val_score(model, x, y, cv=kfold,
scoring=scoring)
 print("Model", scoring, " mean=", results.mean() , "stddev=",
results.std())

Results in:

Model accuracy mean= 0.8886084284460052 stddev= 0.03322328503979156
Model roc_auc mean= 0.9185419071788103 stddev= 0.05710985874305497

And the individual scores:

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html#sklearn.metrics.roc_auc_score
http://logisticregressionanalysis.com/MiscPages/KidCreative.csv
https://github.com/werowe/logisticRegressionBestModel/blob/master/logistic regression.json
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html

print ("scores", results)

Model accuracy mean= 0.8886084284460052 stddev= 0.03322328503979156
scores

Model roc_auc mean= 0.9185419071788103 stddev= 0.05710985874305497
scores

According to Wikipedia, accuracy and precision are defined to be "In simplest terms, given a set of
data points from repeated measurements of the same quantity, the set can be said to be precise if
the values are close to each other, while the set can be said to be accurate if their average is close
to the true value of the quantity being measured."

Then the ROC: “A receiver operating characteristic (ROC), or simply ROC curve, is a graphical plot
which illustrates the performance of a binary classifier system as its discrimination threshold is
varied. It is created by plotting the fraction of true positives out of the positives (TPR = true positive
rate) vs. the fraction of false positives out of the negatives (FPR = false positive rate), at various
threshold settings”

In other words a threshold is set and then the ratio of false positive and false negatives is calculated.

We calculate that as shown below. We can run this calculation on the training data. In other words
we feed the actual y values and the predicted ones, model.predict(x), into roc_curve().

model.fit(x, y)
predict = model.predict(x)
from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y, predict)
print ("fpr=", fpr)
print ("tpr=", tpr)
print ("thresholds=", thresholds)

results in:

fpr=
tpr=
thresholds=

We can calculate the area under the curve the receiver operating characteristic (ROC) curve:

auc = roc_auc_score(y, predict)
print (auc)

Results in:

0.8028029197080292

We can plot the ROC curve like this:

import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc

fpr = dict()

tpr = dict()
roc_auc = dict()

n_classes = 2
for i in range(n_classes):
 fpr, tpr, _ = roc_curve(predict, y)
 roc_auc = auc(fpr, tpr, auc(y,predict, reorder=True))

plt.figure()
lw = 2
plt.plot(fpr, tpr, color='darkorange',lw=lw, label='ROC curve (area = %0.2f)'
% roc_auc)
plt.plot(, , color='navy', lw=lw, linestyle='--')
plt.xlim()
plt.ylim()
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()

Results in this plot:

