
SRE VS DEVOPS: WHAT’S THE DIFFERENCE?

Google was among the pioneering adopters of the DevOps SDLC methodology. The company
scaled its business rapidly, setting an example for organizations pursuing similar growth trajectory
by leveraging the DevOps framework.

In recent years, however, Google has expanded its approach to service management, calling it site
reliability engineering (SRE). Let’s look at the differences between DevOps and SRE.

Understanding DevOps
DevOps is an ITSM framework that defines the mindset, culture, and philosophy of working on IT
projects as a collaboration among developers, operations, and QA teams. The collaboration spans
the SDLC pipeline with no proverbial walls or silos that produce hard separation between the three
roles. Instead of using tools or processes as descriptors, DevOps is best described in terms of its
characteristics, both interpersonal and cultural, necessary to achieve:

Continuous application delivery
Shorter release cycles
Reduced waste processes
Lower expenses
Reduced friction among the workforce

However, DevOps doesn’t outline specific practical guidelines to apply those concepts in real-world
environments, partly because DevOps principles are designed to be followed with organizational
context and use cases. Organizations have the freedom to optimize tradeoffs in following the
DevOps principles. For example, DevOps requires IT teams to accept failure as a normal. According

https://dev.blogs.bmc.com/blogs/devops-basics-introduction/
https://landing.google.com/sre/books/
https://dev.blogs.bmc.com/blogs/sdlc-software-development-lifecycle/


to DevOps, there’s no specific definition of ‘failure’ and ’normal’. This leaves potential gaps in
translating DevOps principles into concrete and practical steps that an IT organization can adopt and
replicate Google’s DevOps strategies.

What is SRE?
Site reliability engineering (SRE) fuses the software engineering and operations disciplines. SRE
professionals spend about half their time in development tasks and half on operations tasks. The
SRE role enables collaboration and information sharing between Dev and Ops departments, similar
to the DevOps principles but for additional specific objectives.

SRE satisfies DevOps principles
If you’re asking which is better, you’re asking the wrong question. Instead, consider Google’s analogy
of DevOps as a programming language interface and SRE as a programming class used to
implement DevOps. The philosophy of DevOps may define the overall behavior of a service
management framework, with the specific implementation strategy left up to the author. SRE, then,
is a prescriptive approach to implement, measure, and achieve DevOps objectives.

There are five key ways SRE complies with DevOps:

1. Reducing organizational silos
SRE treats Ops as a software engineering problem. Engineers are required to spend their efforts in
solving issues that were previously thrown across the proverbial wall between Dev and Ops. The
shared sense of responsibility leads to practical initiatives such as reducing bugs early during the
development sprints and using similar tools between Dev and Ops. These issues may be more
focused on the engineering design and applications, instead of business logic problems. For
example, the SRE may have competencies to improve application performance and latency instead
of managing infrastructure resources. Like DevOps, there is less focus on specific tools used in the
Dev or Ops environment, but adequate expertise are available to use similar technologies in either
department.

2. Accepting failure as normal
Similar to DevOps, SREs don’t pass the blame for failures and production incidents between the IT
teams. SRE guidelines encourage radical changes (within limits) that potentially lead to failure. A
measured risk budget is allowed for SREs to test these limits and potentially innovate faster. SREs
also assume that 100% availability and performance targets are not viable to facilitate growth. Strong
collaboration between business and IT is required from an SRE perspective to evaluate optimal
targets for service level objectives (SLOs) and service level indicators (SLIs). Any violation funnels a
feedback look to the IT teams, targets are re-evaluated and optimized for the changing business
and IT circumstances. Blameless postmortem of incidents and failures is mandated as part of the
SRE framework.

3. Implementing gradual change
Like DevOps, SRE also encourages continuous improvement through change. SRE requires the

https://cloud.google.com/blog/products/gcp/sre-vs-devops-competing-standards-or-close-friends


changes to be small and frequent. As a result, any negative repercussions are less impactful and
low-risk improvements can be readily tested and implemented. Automated testing of such changes
is readily used in the change management strategies, including CI/CD as adopted in the DevOps
framework. An objective measurement of change needs to be defined such that the cost of failure
reduces at the same time. For example, reducing the mean time to repair (MTTR) for production
incidents allows more time for devs to invest in feature improvements. As a result, the product
quality improves on a gradual but continuous basis.

4. Leveraging tooling and automation
While DevOps encourages automation and technology adoption, SRE is focused on embracing
consistent technologies and information access across the IT teams. Google pioneered this concept
by unifying its codebase, albeit not specifically for its SRE framework. SRE requires all teams
working on the same service to adopt the same technology solutions. Incompatibility and integration
issues between technologies from different vendors, era and use cases can create unnecessary
silos even in the DevOps environment. In essence, the adopted tooling also determines the skillset
necessary for each particular team and service area. However, SRE is not entirely about using a
specific and well-defined set of technologies to fulfil certain IT tasks, but focused on the API
orientation of the tooling and how the associated ITSM activities are served.

5. Measuring everything
Both DevOps and SRE encourage measurement. DevOps is primarily focused on the process
performance and results achieved with the feedback loop to realize continuous improvement. SRE
requires measurement of SLOs as the dominant metrics, since the framework observes Ops
problems as software engineering problems. SRE also requires budgeting for toil activities and risk. It
is assumed that the definition of ‘normal’ will evolve on a continuous basis. In the spirit of gradual
change and improvements, IT teams must observe some slack that allows them to perform
repeatable and automatable tasks manually. Once the ITSM model of the organization matures,
these tasks can be automated, redefining the new ‘normal’ including a lower budget for risk through
the improved ITSM capability. Both DevOps and SREs follow a data-driven approach. Evaluating
appropriate targets however, remains to be a contextual challenge is less prescriptive in nature for
either ITSM practices.

Additional resources
 

From Apollo 13 to Google SRE from Sanjeev Sharma

https://dev.blogs.bmc.com/blogs/deployment-pipeline/
https://dev.blogs.bmc.com/blogs/mttr-explained-repair-vs-recovery-in-a-digitized-environment/
https://www.slideshare.net/sanjeev-sharma/from-apollo-13-to-google-sre
https://www.slideshare.net/sanjeev-sharma

