
SQL VS NOSQL DATABASES: WHAT'S THE DIFFERENCE?

Larry Ellison is one of the world's richest men, and has been for decades. He founded Oracle in the
early 1970's taking an idea from IBM's Edgar F. Cobb for a SQL relational database to create the
Oracle Database rdbms (relational database management system). Oracle obtained a monopoly
position in this market, since in those days there was virtually no free software and practically all
applications ran on IBM mainframes. Even IBM's database, DB2, could not unseat Oracle as the
market leader, as that database only ran on mainframes. It was not until racks of PCs began to be
used a servers in the 1990s (as they are today) that people used anything but mainframes. Oracle is
still a monopoly for most transactional business applications among the Fortune 500. Oracle has
purchased the most common opensource alternative, MySQL, and has even purchased opensource
Java itself. But those remain free.

When it comes to choosing a database, one of the biggest decisions an organization may have to
make is whether to pick a relational (SQL) or non-relational (NoSQL) data structure. While both of
these are good choices, each have clear advantages and disadvantages which must be kept in
mind. We have broken down the most important differences between SQL and NoSQL and
highlighted the benefits of each.

What is SQL?
SQL (Structured Query Language) is a programming language that is used to manage data in
relational databases. Relational databases use relations (typically called tables) to store data and
then match that data by using common characteristics within the dataset. Some common relational

database management systems that use SQL are Oracle, Sybase, Microsoft SQL Server, Access, and
Ingres.

Cobb's breakthrough paper describes a database where objects could be constructed and queried
using something he called SQL, structured query language. He used SQL to create both data (in
objects called tables) and the schema for that data, which describes fields in columns. A single
record in a SQL database is called a row.

What is NoSQL?
A NoSQL database, on the other hand, is self-describing, so does not require a schema. Nor does it
enforce relations between tables in all cases. All its documents are JSON documents, which are
complete entities that one can readily read and understand. NoSQL refers to high-performance,
non-relational databases that utilize a wide variety of data models. These databases are highly
recognized for their ease-of-use, scalable performance, strong resilience, and wide availability.
NoSQL database examples include MongoDB, MarkLogic, Couchbase, CloudDB, and Amazon’s
Dynamo DB.

Major Differences
There are many differences between SQL and NoSQL, all of which are important to understand
when making a decision about what might be the best data management system for your
organization. These include differences in:

Language
Scalability
Community
Structure

The Language
One of the major differences between SQL relational and NoSQL non-relational databases is the
language. As mentioned, SQL databases use Structured Query Language for defining and
manipulating data. This allows SQL to be extremely versatile and widely-used — however, it also
makes it more restrictive. SQL requires that you use predefined schemas to determine the structure
of your data before you even begin to work with it. Your data must also follow the same structure as
well, which can entail significant upfront preparation along with careful execution.

A NoSQL database features a dynamic schema for unstructured data and the data can be stored in
many different ways, whether it be graph-based, document-oriented, column-oriented, or organized
as a KeyValue store. This extreme flexibility allows you to create documents without first having to
carefully plan and define their structure, add fields as you go, and vary the syntax from database to
database. It also allows you to give each document its own unique structure, providing you with
more freedom overall.

The Scalability
Another big difference between SQL and NoSQL is their scalability. In most SQL databases, they are
vertically scalable, which means that you can increase the load on a single server by increasing

components like RAM, SSD, or CPU. In contrast, NoSQL databases are horizontally scalable, which
means that they can handle increased traffic simply by adding more servers to the database. NoSQL
databases have the ability to become larger and much more powerful, making them the preferred
choice for large or constantly evolving data sets.

The Community
Due to SQL’s maturity, it has a much stronger and more developed community compared to NoSQL.
There are thousands of chats and forums available where experts can share knowledge and discuss
SQL best practices, continuously enhancing skills. Although NoSQL is growing rapidly, its
community is not as well defined as SQL due to the fact that it is still relatively new.

The Structure
Finally, a last thing to consider when debating SQL versus NoSQL is their structures. SQL databases
are table-based which makes them a better option for applications that require multi-row
transactions. Samples of these may be accounting systems or even legacy systems that were
originally built for a relational structure. NoSQL databases can be key-value pairs, wide-column
stores, graph databases, or document-based.

So Which Database Is Right For Your Business?
The best way to determine which database is right for your business is to analyze what you need its
functions to be. SQL is a good choice for any organization that will benefit from a predefined
structure and set schemas, particularly if they require multi-row transactions. It is also a good option
if all data must be consistent without leaving room for error, such as with accounting systems.

NoSQL is a good choice for those companies experiencing rapid growth with no clear schema
definitions. NoSQL offers much more flexibility than a relational database and is a solid option for
companies who must analyze large quantities of data or whose data structures they manage are
variable.

Examples
Below you can clearly see that the first field is student and the second field is class.

{ student: "Walker Rowe",
 class: "biology"
}

In terms of SQL, the user would first create this schema before they could add data to the database:

CREATE TABLE studentClasses (
 student varchar,
 class varchar
);

Where varchar is variable character length.

To add data to that table, one would:

INSERT INTO studentClasses (student, class)
VALUES ("Walker Rowe", "biology:);

With a NoSQL database, in this example MongoDB, you would use the database API to insert data
like this:

db.studentClasses.insert({ name: "Walker Rowe", class: "biology" })

And then you can create the union (all elements from two or more sets) and intersection (common
elements of two or more sets) of sets using SQL.

The big breakthrough here was to let programmers do all this using easy-to-understand SQL syntax.
Then Oracle made further technological advances to ensure database referential integrity and
improve performance by indexing fields and caching records. (Database referential integrity means
the completeness of transactions so that there are no orphaned records. For example, a sales record
with no corresponding product item. This is what is I meant by saying Oracle can enforce the
relationship between tables.)

Note that in the MongoDB example we have described above, Oracle programmers would say that
the table studentClasses is an intersection. Because you can determine from it both what classes a
student has and which students are in which class. In this case you would also have both student
and class records contain things like the class room number and the student phone number.

The Oracle database is called a row-oriented database. Data is grouped into rows and columns. We
don't need to mention column-oriented databases here, like Cassandra, as they are different in
architecture and not conception to such a large degree. So they are not so fundamentally different
as SQL versus NoSQL. In particular, the Cassandra NoSQL database is used to group similar columns
of data near each other so they can be retrieved at the highest possible speed. Also, Cassandra and
NoSQL database get rid of the concept of database normalization, which is key to Oracle, as we
explain below. And they do not store empty column values, so the row lengths can differ.

Efficiency and Normalization
One thing that Oracle stressed was the relationship between objects. They said that all data should
be normalized. This means no data should be stored twice. So instead of putting, for example, the
school address in every student record, it would be better to maintain a school table and store the
address there. NoSQL databases have gotten rid of this constraint, to a certain degree.

Disk space was expensive in the 1970s and so was memory, so normalization made sense. But it can
take some time to do a joint operation to bring together a record that is stored in different tables into
one logical unit. It also requires the overhead of maintaining index files and writing to those as data is
added or deleted

NoSQL databases say all that does not matter as disk space and memory are cheap. Proponents of
that say it is okay to, regarding the aforementioned case, put the school address in with the student.
This speeds data retrieval time and makes coding easier.

NoSQL vs SQL
Oracle's largest competitor in the business market is SAP. They have their own database, Hana. But
the only difference between them and Oracle is Hana stores all its records in memory (flushing them

to disk as needed.). It does this for speed. Regardless, it is still a rdbms.

It is difficult to make the case to switch to NoSQL databases in business applications that have been
running for decades or to propose those for new applications when companies already have
knowledge of rdbms. There are management issues that Oracle has solved, such as data replication,
that could leave someone using, for example, ElasticSearch, without support and with a downed
system. To fill that gap, some companies have taken over the support of — and sometimes most of
the programming for — so-called opensource databases, like ElasticSearch. If you want support for
that then you can buy support and a supported version from Elastic.

The other is the paradigm switch for transactional systems. It is easy to conceive of adding a sale to
a sales database. Oracle then would automatically calculate on-hand inventory using a saved SQL
operation called a view. For MongoDB, a program would have to sort through the inventory items
and subtract the sales to determine the new on-hand inventory.

Some Common NoSQL Databases
If you read the use cases for NoSQL databases, you will find that those tend to be adopted as niche
and not enterprise systems. For example, Uber uses Cassandra to keep track of drivers. But its
needs are unique, including the need to write millions of records per second across multiple data
centers. They even wrote their own implementation of Cassandra so that it could run on Mesos.
Mesos is an orchestration system similar to containers.

Amazon markets is DynamoDB database as having "millisecond latency." They also drop the term
NoSQL and simply call it a nonrelational database.

DynamoDB, like MongoDB, has a JavaScript interface, so you can work with it using that relatively
simple programming language as well. For example, to add a record, you first instantiate an instance
of the database, then add the JSON item like this:

var docClient = AWS.DynamoDB.DocumentClient()
docClient.put("{JSON … }"}

One implementation detail is that you can run these operations in MongoDB and DynamoDB using
Node.js. That is JavaScript running in the middle tier, so you do not need to create JAR files or
middleware servers like Oracle Weblogic.

So, which should you be using for your new project? Your accounting system could very well
continue to run on an RDBMS system. But there are alternatives to paying Oracle for licensing fees,
like using MySQL. But will it use MongoDB? That is not very likely for the short term, as there are
millions of programmers around the world using Java and Oracle and project managers and users
who understand that. Use ElasticSearch for logs and Spark for analytics. As for the others, study
those on a case by case basis to see which works best given your resources, skill, ability to suffer
lost transactions, etc.

Conclusion
No matter what field you are in, choosing the correct database for your organization is an important
decision. NoSQL databases are quickly becoming a major part of the database landscape today, and
they are proving to be a real game-changer in the IT arena. They have numerous benefits, including

https://www.youtube.com/watch?v=4Ap-1VT2ChU&feature=youtu.be

lower cost, open-source availability, and easier scalability, which makes NoSQL an appealing option
for anyone thinking about integrating in Big Data. They are a young technology, however, which
makes them slightly more volatile.

On the other hand, SQL databases have proven themselves for over 40 years and use long-
established standards that are well defined. They have a huge community of experts behind them,
and the opportunity for collaboration is limitless.

Overall, the decision of using SQL versus NoSQL for business is not entirely black and white; it
requires some comparing and contrasting to determine which database best fits your specific needs.
With the proper amount of research and preparation, however, you will ensure that the database
you choose provides an efficient and streamlined management system for your organization.

Running SQL on Db2?
Learn about BMC’s Performance for Db2 SQL.

Find and eliminate the wasteful SQL statements that are slowing you down, with the BMC
Performance for Db2 SQL solution. Designed to manage SQL performance throughout the
application lifecycle, the tools in this solution will help you:

Diagnose performance problems and track them to their source, so you can effectively tune
your SQL
Anticipate SQL-related slowdowns so you can resolve them before they impact service levels
Avoid cumbersome reorganizations and costly CPU upgrades by making the most of your
resources
Ensure your SQL is running efficiently and cost effectively at all times

Additional Resources
Sql vs NoSQL from RTigger

https://dev.blogs.bmc.com/it-solutions/performance-db2-sql.html
https://www.slideshare.net/RTigger/sql-vs-no-sql
https://www.slideshare.net/RTigger

