
SPARK ELASTICSEARCH HADOOP UPDATE AND UPSERT
EXAMPLE AND EXPLANATION

Here we explain how to write Python to code to update an ElasticSearch document from an Apache
Spark Dataframe and RDD.

There are few instructions on the internet. Those written by ElasticSearch are difficult to understand
and offer no examples. So we make the simplest possible example here.

This code adds additional fields to an ElasticSearch (ES) JSON document. i.e. it updates the
document. Spark has built-in native support for Scala and Java. But for Python you have to use the
Elasticsearch-Hadoop connector, written by ElasticSearch. That makes this operation more
complicated.

Code on Github
The code for this exercise is here:

Update ElasticSearch
Run code with spark-submit
Create Data

Prerequisites
ES. Download the binary and do not use apt-get install as the version stored there is too old.
Apache Spark.

https://www.elastic.co/guide/en/elasticsearch/hadoop/current/configuration.html#cfg-update
https://github.com/werowe/elasticsearch/blob/master/updataData.py
https://github.com/werowe/elasticsearch/blob/master/submitUpdate.sh
https://github.com/werowe/elasticsearch/blob/master/addData.sh

Hadoop-ElasticSearch jar file. When you download it from here, it will provide jars for various
languages.

Add Data
First we need to add two data records to ES. The key is the notation: school/doc/1

Means to add this to the index school, type doc, with id = 1.

curl -XPUT --header 'Content-Type: application/json'
http://localhost:9200/school/doc/1 -d '{
 "school" : "Clemson"
}'

curl -XPUT --header 'Content-Type: application/json'
http://localhost:9200/schools/doc/2 -d '{
 "school" : "Harvard"
}'

Here is the code to run the python code below as a spark-submit job. You do not need this to step
through the code one line at a time with pyspark.

#!/bin/bash

NUM_CORES=*
DRIVER_MEM=3g

JARS="/usr/share/spark/spark-2.3.2-bin-hadoop2.7/jars/elasticsearch-
hadoop-6.4.2/dist"

export SPARK_HOME="/usr/share/spark/spark-2.3.2-bin-hadoop2.7"
export PATH=$PATH:$SPARK_HOME/bin
export CODEPATH="/home/ubuntu/Documents/esearch"

cd $CODEPATH

$SPARK_HOME/bin/spark-submit --master local --driver-memory
$DRIVER_MEM --jars $JARS/elasticsearch-hadoop-6.4.2.jar
$CODEPATH/updateData.py

Code Explained
read.format opens a connection to ES. The important item to note is "es.read.metadata", "true". We
need the metadata as that provides the document _id that we will need to do the update operation

reader =
spark.read.format("org.elasticsearch.spark.sql").option("es.read.metadata",
"true").option("es.nodes.wan.only","true").option("es.port","9200").option("e
s.net.ssl","false").option("es.nodes", "http://localhost")

https://www.elastic.co/downloads/hadoop

Next we read all the documents in the index school.

df = reader.load("school")
df.show()

Now we filter to find the one record that is equal to Harvard.

df.filter(df == "Harvard").show()

Now that the df.filter() operation works in situ. In other it does not return a new dataframe. Instead if
operates on the current dataframe. You can see that below. Only Harvard is shown after the filter
operation.

df.show()
+---------+-------+--------------------+
| school| _metadata|
+---------+-------+--------------------+
| Harvard| == "Harvard").show()
+---------+-------+--------------------+
| school| _metadata|
+---------+-------+--------------------+
| Harvard|
df2=df.withColumn("_id", lit(id))

Next we create the esconf object as a dictionary. In code examples on the internet you will see this
as JSON. But the notation below is cleaner and easier to work with.

The import items to note are:

es.update.script.inline
ctx._source.location means to update or create
a field called location. ctx_source is the ES
object to do that.

es.update.script.params

location:<Cambridge> are the parameter values
passed to the inline script es.update.script.inline.
The <> means to write a literal. If we wanted to
write a field value we would leave them off.

es.mapping.id

This tells ES to look in the dataframe for the id
column and use that as the document ID _id. ES
uses that to find the document we want to
update in ES.

es.write.operation
upsert means to add the document if it does not
exist, otherwise update it. update means to
update it.

esconf={}
esconf = "_id"
esconf = "localhost"
esconf = "9200"

esconf = "ctx._source.location = params.location"
esconf = "location:"
esconf = "upsert"

This writes the data. The **esconf means to read the dictionary escconf. The mode("append")
means to add the fields to the existing document.

df2.write.format("org.elasticsearch.spark.sql").options(**esconf).mode("appen
d").save("school/info")

Now we look up the document and notice that location field has been updated to Cambridge.
Bunch of Ivy league snobs.

curl -X GET 'http://localhost:9chool/info/_search'

{"took":1,"timed_out":false,"_shards":{"total":5,"successful":5,"skipped":0,"
failed":0},"hits":{"total":1,"max_score":1.0,"hits":}}

Complete Code
from pyspark import SparkContext, SparkConf
from pyspark.sql import SQLContext
from pyspark.sql.functions import lit

conf = SparkConf().setAppName("updateSchools")
sc = SparkContext(conf=conf)
sc.setLogLevel("INFO")
spark = SQLContext(sc)

reader =
spark.read.format("org.elasticsearch.spark.sql").option("es.read.metadata",
"true").option("es.nodes.wan.only","true").option("es.port","9200").option("e
s.net.ssl","false").option("es.nodes", "http://localhost")

df = reader.load("school")
df.show()

df.filter(df == "Harvard").show()

r=df.rdd.collect()
id = r

df2=df.withColumn("_id", lit(id))

esconf={}
esconf = "_id"
esconf = "localhost"

esconf = "9200"
esconf = "ctx._source.location = params.location"
esconf = "location:"
esconf = "upsert"

df2.write.format("org.elasticsearch.spark.sql").options(**esconf).mode("appen
d").save("school/info")

