
WHAT IS SPAGHETTI CODE (AND WHY YOU SHOULD AVOID IT)

Spaghetti code is not an endearing term. It’s a word that describes a type of code that some say will
cause your technology infrastructure to fail. Despite the warnings about spaghetti code, many
enterprise businesses are faced with issues that involve the set of processes and errors that make
up spaghetti coding. This occurs for a number of reasons but can be detrimental to your overall
infrastructure, most experts believe. In this article, we’ll talk about spaghetti code as a concept and
what it means for your organization.

What is Spaghetti Code?
Spaghetti code is a pejorative piece of information technology jargon that is caused by factors like
unclear project scope of work, lack of experience and planning, an inability to conform a project to
programming style rules, and a number of other seemingly small errors that build up and cause your
code to be less streamlined overtime. Typically, spaghetti code occurs when multiple developers
work on a project over months or years, continuing to add and change code and software scope
with optimizing existing programming infrastructure.

This usually results in somewhat unplanned, convoluted coding structures that favor GOTO
statements over programming constructs, resulting in a program that is not maintainable in the long-
run. For businesses, creating a program only to have it become unmaintainable after years of work
(and money) has gone into the project costs, IT managers, and other resources. In addition, it makes
programmers feel frustrated to spend hours on coding an infrastructure only to have something
break, and then they have to sift through years of work, often managed by different developers, to

https://dev.blogs.bmc.com/blogs/low-code-vs-no-code/


identify the issue, if they can solve it at all.

For this reason, spaghetti code is considered a nuisance to developers and IT managers, and for
enterprise businesses that have to manage their resources, it should be avoided completely.

History of Spaghetti Code
While it’s not clear who coined the term “spaghetti code” or when, it was being used to describe a
tangled mess of code lacking structure by the late 1970s. In the 80s, the term was used at least once
in a whitepaper to describe the model of code and fix that led to the development of waterfall
programming. However, the vast majority of books from that era refer to it as a nest of messy code
lacking the structure required to scale effectively.

A 1981 coding satire raised the idea that the founders of IBM must have been fond of spaghetti code
because of how they developed FORTRAN. In Richard Hamming’s book, The Art of Doing Science
and Engineering: Learning to Learn, he said:

“If, in fixing up an error, you wanted to insert some omitted instructions then you took the
immediately preceding instruction and replaced it by a transfer to some empty space. There you put
in the instruction you just wrote over, added the instructions you wanted to insert, and then followed
by a transfer back to the main program.

“Thus the program soon became a sequence of jumps of the control to strange places. When, as
almost always happens, there were errors in the corrections you then used the same trick again,
using some other available space. As a result the control path of the program through storage soon
took on the appearance of a can of spaghetti. Why not simply insert them in the run of instructions?
Because then you would have to go over the entire program and change all the addresses which
referred to any of the moved instructions! Anything but that!”

How Does it End Up in Your Infrastructure?
Spaghetti programming is not clean or structured and flies in the face of scopes and models put
together by enterprise businesses; so how does it get there? Spaghetti code occurs when certain
conditions are met:

A programmer or programmers did not take care to finesse the architecture using
programming constructs, and instead relied on easier, or less thought out approaches, or just
dove into a project and started coding without a plan.
Development best practices and most streamlined coding languages change over time, so
when programming evolves, existing systems should be optimized to keep them clean and
structured. When this fails to occur, it creates an ecosystem of spaghetti code.
While spaghetti code can occur just hours after starting a project, in enterprise business, it
often occurs over a longer period where different programmers change hands on a project.
Spaghetti code can occur when someone lacks experience and they use simpler techniques,
like GOTO commands, over more refined ones that secure the structural integrity of program
architecture.

In general, spaghetti code is the natural result that happens to businesses when they fail to plan for
a reliable architecture over the life of a project.

https://dl.acm.org/doi/10.1109/2.59
http://self.gutenberg.org/articles/eng/Spaghetti_code
https://books.google.com/books?id=49QuCOLIJLUC&printsec=frontcover
https://books.google.com/books?id=49QuCOLIJLUC&printsec=frontcover


Spaghetti Code: How to Avoid It
To avoid a tangle of inefficient spaghetti code, programmers must:

Be diligent: First and foremost, diligence and attention to detail are key. A developer must be
keenly focused on creating the best architecture for their project and must not rush the
architecture.
Unit test often: By performing regular unit tests, you can reduce the likelihood that spaghetti
code will occur.
Double-check your programmers: An extra set of eyes can help, if you come across spaghetti
code, address it immediately and ask that it be changed.
Use lightweight frameworks: In 2020, there are a number of lean, lightweight frameworks you
can implement. By keeping the framework streamlined, you are setting yourself up for more
simplified solutions.
Implement layers: In practice, layers help you correct spaghetti code more easily by
addressing a single layer instead of an entire program.

Related Code Types
There are a few related types of code you can review for additional learning:

Ravioli code: This is the term for errors in object-oriented code that occur when code is easy
to understand in a class but not in the context of the entire project.
Lasagna code: This is a problem that can occur when you use layers to avoid spaghetti code
and the layers are so interdependent on one another that a single break in a layer affects the
whole project.
Pizza code: If a code architecture is too flat, it’s called a pizza code.


