
SNOWFLAKE SQL AGGREGATE FUNCTIONS & TABLE JOINS

In this article, we explain how to use aggregate functions with Snowflake.

What are aggregate functions?
Aggregate functions are those that perform some calculation over all the rows or subsets of rows in
a table.

For example, the simplest aggregate function is count(). You could count all the customers in a
table using count(*) with no group or where clause. The * tells Snowflake to look at all columns, but
you could have put just one column as it means the same thing.

select count(*) from orders

But if you want to count orders over some subset you could, for example, count customers by order
type:

select ordertype, count(*) from orders
group by ordertype;

Create some sample data
Let's create some sample data in order to explore some of these functions. Log into Snowflake and
click the Create Database button to create a database called inventory. Next, open the worksheet
editor and paste in these two SQL commands:

CREATE TABLE customers

https://dev.blogs.bmc.com/blogs/snowflake-query-json-data/

 (
 customernumber varchar(100) PRIMARY KEY,
 customername varchar(50),
 phonenumber varchar(50),
 postalcode varchar(50),
 locale varchar(10),
 datecreated date,
 email varchar(50)
);

CREATE TABLE orders
 (
 customernumber varchar(100) PRIMARY KEY,
 ordernumber varchar(100),
 comments varchar(200),
 orderdate date,
 ordertype varchar(10),
 shipdate date,
discount number,
quantity int,
 productnumber varchar(50)
)

Then paste in this data. The data looks like this:

insert into customers
(customernumber,customername,phonenumber,postalcode,locale,datecreated,email)
values ('ee56d97a-fcaa-11ea-
ab7a-0ec120e133fc','zopvxqhwocrtsonemrcf','3119110','vqlx','','2020-09-22','m
nst@yoaq.com');

insert into orders
(customernumber,ordernumber,comments,orderdate,ordertype,shipdate,discount,qu
antity,productnumber) values ('ee56d97a-fcaa-11ea-
ab7a-0ec120e133fc','ee56d97b-fcaa-11ea-
ab7a-0ec120e133fc','shsyuaraxxftdzooafbg','2020-09-22','sale','2020-10-01','0
.7751890540939359','40','ee56d97c-fcaa-11ea-ab7a-0ec120e133fc');

Joining tables
The customer and orders tables are related by order number. Obviously you would need to bring
them together in one-set when you need both customer and order data together. You do this with a
join, which creates that set temporarily

You join the two tables on the column element customer number. Note that:

We use as to create an alias to abbreviate the table names to make it easier to type.
We use join instead of inner join. (Other tutorials often add inner join but it just confuses things

https://raw.githubusercontent.com/werowe/glue/master/customersOrders.sql

when they are the same thing. They often write this, too, to contrast that with a left-hand, right-
hand, or outer join which are like cartesian products, i.e. tack each of n orders onto each of m
customers thus creating a set of n*m rows.)

select c.customernumber, c.customername, o.ordernumber, c.datecreated,
o.orderdate, o.shipdate from customers as c
join orders as o on c.customernumber = o.customernumber;

Standard deviation
Let's calculate the standard deviation in shipping times. We do this in three steps:

Join customer and order tables1.
Use the datediff() function to calculate the shipping time, meaning how long the customer2.
must wait.
Each outer query refers to an inner query by wrapping it in parentheses . So, the query is built3.
up in stages.

Here is the complete query. See below to see how it is broken down.

select
 avg(shiptime),
 stddev_pop(shiptime)
from
 (
 select
 customernumber,
 customername,
 orderdate,
 shipdate,
 datediff(days, orderdate, shipdate) as shiptime
 from
 (
 select
 c.customernumber,
 c.customername,
 o.ordernumber,
 c.datecreated,
 o.orderdate,
 o.shipdate
 from
 customers as c
 join orders as o on c.customernumber = o.customernumber
)
 order by
 shiptime desc
)

We build up the query in stages. Start at bottom (aka innermost) query and work upwards:

Join the customer and orders table so that we can have the customer and order details in one1.
set so we can list both. (We could have skipped this step since we are only using the orders
table.)

(
 select
 c.customernumber,
 c.customername,
 o.ordernumber,
 c.datecreated,
 o.orderdate,
 o.shipdate
 from
 customers as c
 join orders as o on c.customernumber = o.customernumber
)

Calculate the shipping time using the datediff() function2.

select
 count(*),
 datediff(days, orderdate, shipdate) as shiptime
from
 orders
group by
 shiptime
order by
 shiptime

Calculate the standard deviation over the shipping times:3.

select avg(shiptime), stddev_pop(shiptime) from (step b)

Here are the results:

AVG(SHIPTIME) STDDEV_POP(SHIPTIME)
8.539063 3.512038155

Discrete percentile
The 95th percentile means to show 95% of the population. That's a common statistic as data outside
that range is generally considered outliers.

Here we show how to calculate the 25th percentile:

select customernumber , PERCENTILE_disc(0.25) within group (order by
quantity)
from orders

 where customernumber = '5d2b742e-fcaa-11ea-ab7a-0ec120e133fc'
 group by customernumber
 order by customernumber

Results in:

CUSTOMERNUMBER PERCENTILE_DISC(0.25) WITHIN GROUP (ORDER BY QUANTITY)
5d2b742e-fcaa-11ea-ab7a-0ec120e133fc 9

Do a check and you can see that order quantities are 92, 55, and 9. So the only one in the bottom
25% percentile is 9.

select quantity from orders
where customernumber = '5d2b742e-fcaa-11ea-ab7a-0ec120e133fc'
order by quantity desc;

Here are the results:

QUANTITY
92
55
9

listagg
The listagg function lists orders by customer in an array, putting them into another format that you
could use into a where clause that calls for a list of elements.

select listagg(ordernumber, '|')
from orders
where customernumber = '5d2b742e-fcaa-11ea-ab7a-0ec120e133fc'

Here are the results:

LISTAGG(ORDERNUMBER, '|')
5d2b742f-fcaa-11ea-ab7a-0ec120e133fc|5d2b7431-fcaa-11ea-
ab7a-0ec120e133fc|5d2b7433-fcaa-11ea-ab7a-0ec120e133fc

When you run queries, you should cross check them with other queries to double check your work.
Here we list customer numbers straight up and down in rows.

select orderumber from orders
where where customernumber = '5d2b742e-fcaa-11ea-ab7a-0ec120e133fc'

mode
The mode() function shows the most frequent values:

select mode(quantity)
from orders

Results in:

MODE(QUANTITY)
13

Additional resources
For more tutorials like this, explore these resources:

BMC Machine Learning & Big Data Blog
How To Import Amazon S3 Data to Snowflake
Snowflake Window Functions: Partition By and Order By
Simplifying and Scaling Data Pipelines in the Cloud
AWS Guide, with 15 articles and tutorials
Amazon Braket Quantum Computing: How To Get Started

https://dev.blogs.bmc.com/blogs/categories/machine-learning-big-data/
https://dev.blogs.bmc.com/blogs/import-data-s3-snowflake/
https://dev.blogs.bmc.com/blogs/snowflake-windows-functions-partition-by-order-by
https://dev.blogs.bmc.com/blogs/simplifying-and-scaling-data-pipelines-in-the-cloud/
https://dev.blogs.bmc.com/blogs/aws-serverless-applications/
https://dev.blogs.bmc.com/blogs/aws-braket-quantum-computing/

