
THE SOFTWARE DEVELOPMENT LIFECYCLE (SDLC): AN
INTRODUCTION

Software Development Lifecycle (SDLC) refers to the systematic development process of software.
The lifecycle spans several stages, which we detail below, that ensure high quality software is built
and released to end-users at a fast pace and optimized cost. Software quality might be determined
by the robustness of its functionality, its performance, its security and, ultimately, the end-user
experience.

In this article, we will discuss the SDLC process and the individual stages that comprise it.

Who uses the SDLC?
Not so long ago, Watt S. Humphrey, known as the father of quality in software, quoted, “Every
business is a software business”. More recently, Microsoft CEO Satya Nadella repeated the quote:
“Every company is a software company”. Business organizations driven by software technologies
must go beyond digital transformation by adapting off-the-shelf technology solutions. These
companies must develop capabilities internally to develop software solutions that optimize business
operations. Additionally, conventional organizations are innovating their business models to serve
end-users through digital channels or leverage technology platforms for improved delivery of
physical goods and services.

As such, the SDLC approach is not limited only to developers or engineers. Cross-function teams
adopt the SDLC mechanism in order to collaborate across various stages of the SDLC and work

https://quidgest.com/en/articles/every-business-software-business/
https://news.microsoft.com/en-gb/2018/11/07/microsoft-ceo-satya-nadella-on-fuelling-tech-intensity-in-the-uk/
https://dev.blogs.bmc.com/blogs/what-is-digital-transformation/


collectively using various SDLC frameworks such as Agile and DevOps. By following modern SDLC
practices and frameworks (see below), the software development process can improve significantly.

Stages of the SDLC
The SDLC follows a series of phases involved in software development. Depending on the SDLC
framework, these phases may be adopted sequentially or in parallel. The SDLC workflows may
involve repeated transitions or iterations across the phases before reaching the final phase.

Phase 1: Requirement Analysis
The initial stage of the SDLC involves stakeholders from tech, business, and leadership segments of
the organization. Activities include:

Analyze and translate business questions into engineering problems by considering a variety of
factors: cost, performance, functionality, and risk.
Evaluate he broad scope of the project and then identify available resources.
Consider project opportunities and risks across the technical and business aspect for every
decision choice in each SDLC phase.

This stage may continue for a prolonged period and includes provision for strategic changes as the
SDLC evolves.

Phase 2: Feasibility Study
During this stage, evaluate the requirements for feasibility. The goal is to quantify the opportunities
and risk of addressing the agreed requirements with the variety of resources and strategies
available to the organization. The feasibility study evaluates the following key aspects, among
others:

Economic: Is it financially viable to invest in the project based on the available resources?
Legal: What is the scope of regulations and the organization’s capacity to guarantee
compliance?
Operational: Can we satisfy the requirements within scope definition according to the
proposed operational framework and workflows?
Technical: What is the availability of technology and HR resources to support the SLDC
process?
Schedule: Can we finish the project in time?

Executive decision makers should answer and document these questions and study them



carefully—before proceeding with the software design and implementation process.

Phase 3: Architectural Design
At this stage, the design specifications are documented and reviewed by appropriate technical and
business stakeholders. Evaluate design choices against the risk, opportunities, practical modalities,
and constraints.

Technical documentation specifies systems architecture, configurations, data structure, resource
procurement model. Desired output can include prototypes, pseudocode. and architecture reports
and diagrams that include the necessary technology details. The high-level design details include
the desired functionality of software and system modules. The low-level design details can include
the functional logic, interface details, dependency issues, and errors.

Phase 4: Software Development
Implementation follows the design phase. Several independent teams and individuals collaborate
on feature development and coding activities. Individual developers may build their own codebase
within the development environment before merging it with the collaborating teams in a common
build environment.

While the requirements analysis and design choices are already defined, feedback from the
development teams is reviewed for potential change in direction of the design strategies. This is the
longest process in the SDLC pipeline and it assists subsequent phases of software testing and
deployment.

Phase 5: Testing
Activities in this phase are focused on investigating the performance of the software and discovering
potential issues. Testing teams develop a test plan based on the predefined software requirements.
The plan identifies the resources available for testing, instructions and assignments for testers,
selects types of tests to be conducted and reports to technical executives and decision makers.
Testers often work collectively with development teams and rework the codebase to improve test
results.

At SDLC phases 4 and 4, software builds may be improved several times before the final product is
sent to the deployment and production environment.

Phase 6: Deployment
In the final phase of the SDLC pipeline, the finished product has passed the necessary tests. Now,
make it available for release to end users in the real environment. Several procedures and
preparation activities are involved before a software product can be shipped, including:

Documentation
Transferring ownership and licensing,
Deploying and installing the product on customer systems



Traditional vs modern SDLC methodologies
With conventional SDLC methodologies, such as Waterfall, these phases are performed
independently in series by disparate teams. Under the Agile methodology, these phases are
performed in short, iterative, incremental sprints. An SDLC pipeline and framework can be as varied
as the number of organizations adopting them -- virtually every company identifies specific
components of every SDLC phase and tries to adopt a strategy that works best for their organization.

In today’s era of software development, however, these stages are not always followed sequentially.
Modern SDLC frameworks such as DevOps and Agile encourage cross-functional organizations to
share responsibilities across these phases conducted in parallel.

For instance, the DevOps SDLC framework encourages Devs, Ops, and QA personnel to work
together for continuous development, testing and deployment activities. Additionally, the testing
procedure is shifted left and early in the SDLC pipeline such that software defects are identified
before it’s too late to fix them.

Additional resources
For more information on software development and the SDLC, check out these BMC Blogs:

Differences Between Continuous Integration (CI), Delivery (CD), and Deployment
What is DevOps? A Basic Introduction
Orchestration in SDLC for DevOps
Agile Roles and Responsibilities
Intro to Agile with Scrum: 4 Tips for Getting Started

https://dev.blogs.bmc.com/blogs/devops-vs-agile-whats-the-difference-and-how-are-they-related/
https://dev.blogs.bmc.com/blogs/devops-best-practices-enterprise-architecture/
https://dev.blogs.bmc.com/blogs/devops-continuous-integration-delivery-deployment/
https://dev.blogs.bmc.com/blogs/devops-basics-introduction/
https://dev.blogs.bmc.com/blogs/devops-orchestration/
https://dev.blogs.bmc.com/blogs/agile-roles-responsibilities/
https://dev.blogs.bmc.com/blogs/agile-scrum-getting-started/

