
SCIKIT-LEARN CLASSIFICATION TUTORIAL

Here we show how to use scikit-learn. The code for this example is here. Download the data from
Kaggle here.

Which machine learning framework should you use?
Before we show you how scikit-learn works, it’s work discussing which ML framework to use. I put
this up front because too many people starting data science think they must start with TensorFlow,
but that is overkill for most of your problems. For low-level approaches, which TensorFlow
specializes in, it is too complicated; there are easier approaches.

scikit-learn TensorFlow Keras Spark ML

https://github.com/werowe/sklearn/blob/master/svmSklearn.json
https://www.kaggle.com/uciml/pima-indians-diabetes-database


This general-
purpose ML
framework is both
easy to use and can
tackle most ML
problems.
It is very popular
among data
scientists. Even data
scientists who use
other frameworks
often deploy scikit-
learn utilities in part
of their code.

TensorFlow is
designed for one
purpose: neural
networks. It is very
low level, which
means you’ll need a
lot of knowledge
about NumPy
arrays and neural
network theory.
Google sells special
CPUs, called TPUs,
which are designed
to process tensors
at very large scale.
So you can see it's
designed for
computing intensive
tasks, like facial
recognition, but
most business
problems are less
complicated than
facial recognition.
We've written
tutorials on how to
use ML with
TensorFlow & Keras
here.

If you want to use
TensorFlow, then
use Keras, as it acts
as a front end, thus
making it a lot
easier.  You’ll be
less likely to make
mistakes that
produce wrong
answers.
Keras also works in
front of other
popular ML
frameworks, also
making those easier
to use.
We explain how to
use Keras here.
 

scikit-learn is
designed to run on
one server. If you
have a large
amount of data, you
might want to use
Spark ML, as it's
designed to run
across a cluster.
And Spark ML is
easy-to-understand.

All the Python ML frameworks start pretty much the same, starting with the same tools:

Pandas. This organizes csv, json, Spark, and other types of data into rows and columns. Pandas
greatly simplifies all types of data, but its advanced features can get complicated.
NumPy. This is tied closely to both Pandas and matplotlib. NumPy performs best when
handling the most important machine learning task: the computationally expensive operation
of multiplying matrices in multiple dimensions. As those grow, they can quickly run your
computer out of memory.
Matplotlib. This draws charts, like histograms, line charts, etc. Charting data is a good way to
explore data while you work with the data, and they can illustrate your resulting conclusions at
the end of your program.
Seaborn. This framework, on top of matplotlib, is designed specifically for data science.

The data
The data we are looking at is glucose, body mass index, etc. taken from two sets of people: those
who are diabetic and those who are not. That classification 1 (diabetic) and 0 (not) is in the Outcome
column. The goal is to use that data to train a predictive model that will show given certain health

https://dev.blogs.bmc.com/blogs/tags/ml-with-tensorflow-keras/
https://dev.blogs.bmc.com/blogs/keras-neural-network-classification/
https://dev.blogs.bmc.com/blogs/keras-neural-network-classification/


indicators whether or not a person is likely to have or will get diabetes.

The algorithm
There are a lot of ways to approach a classification problem, like logistic regression or even neural
networks. Here we use the Support Vector Machine (SVM).

The first step is to read the data into a dataframe.

import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

data = pd.read_csv('/home/ubuntu/Downloads/diabetes.csv', delimiter=',')

Then, take a look at it.

data.head()

Machine learning requires that you split the data into features and labels.

Features are the characteristics of what you are looking at, also known as the independent
variables.
Labels are what you are trying to predict, aka the dependent variables.

Classification means there are a finite set of outcomes. Here there are two, so you could call it a
binary classification problem.

As you can see, the outcome, whether someone has diabetes or not, is the last column. So, the rest
are features. It will be easy to split this data since the labels are on the end.

Pregnancies  Glucose  BloodPressure  SkinThickness  Insulin   BMI  \
0            6      148             72             35        0  33.6
1            1       85             66             29        0  26.6
2            8      183             64              0        0  23.3
3            1       89             66             23       94  28.1
4            0      137             40             35      168  43.1

   DiabetesPedigreeFunction  Age  Outcome
0                     0.627   50        1
1                     0.351   31        0
2                     0.672   32        1
3                     0.167   21        0
4                     2.288   33        1

The Pandas drop() command means to create a new dataframe by taking an existing dataframe and
dropping one or more columns. axis=1 means we are referring to the columns and not the rows
(which for Pandas is aka the index).

https://dev.blogs.bmc.com/blogs/hadoop-analytics/#Supportvectormachines


x = data.drop("Outcome", axis=1)

data is a Pandas Series and not a Pandas dataframe. This means it has one column only, but it still
has the index column. np.ravel() will flatten that to an array.

y=np.ravel(data)

The standard procedure is to take the input data and create training and test datasets by splitting
them by some amount. Here we pick 50%.

Training datasets are used to train the model.
Test datasets are used to make predictions based on that trained model.

We use x and y since the familiar equation for a line y = mx + b. For machine learning y is a vector
and m and x are matrices, meaning an n-dimensional vector. b is bias, which is a single real number.

x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.5,
random_state=50)

Now we normalize the data. Basically, this calculates the value (( x - μ) / δ ) where μ is the mean and
δ is the standard deviation. This puts all the features on the same scale, which is a regular machine
learning practice. In other words, it makes large numbers small so that all the numbers are about the
same size.

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler().fit(x_train)

x_train = scaler.transform(x_train)

x_test = scaler.transform(x_test)

First, we declare the model. We are using a support vector machine.

from sklearn.svm import SVC
svc_model = SVC()

Then we train it: it's that simple when you use scikit-learn. There's no other data manipulation
required.

svc_model.fit(x_train, y_train)

The fit() function responds with this information.

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma='auto_deprecated',
  kernel='rbf', max_iter=-1, probability=False, random_state=None,
  shrinking=True, tol=0.001, verbose=False)

Now we use the test data to create predictions.

y_predict = svc_model.predict(x_test)



Then we show how accurate those predictions are by creating what is called a confusion matrix.
This is a visual way to see how many times the model was right versus how many times it was
incorrect.

from sklearn.metrics import classification_report, confusion_matrix

cm = np.array(confusion_matrix(y_test, y_predict, labels=))

confusion = pd.DataFrame(cm, index=, columns=)

                        Predicted Diabetes  Predicted Healthy
Diabetic                     225                 23
Not Diabetic                  68                 68

It’s a little difficult to understand that display at first, so think of it like this:

Diabetic (Outcome = 1)  True positive. Patient is diabetic and model
correctly predicted that.          False positive. Patient was not diabetic
but model said patient was diabetic.

Not Diabetic (Outcome = 0)      False positive. Patient was not diabetic, but
model said patient was diabetic.
        True negative, patient not diabetic and model predicted that.

Here is a graphical way to show the same results using the powerful Seaborn extension to
Matplotlib:

sns.heatmap(confusion,annot=True,fmt='g')

The classification report prints a summary of the model, showing a 77% precision. This means our
model accurately predicts diabetes 77% of the time.

print(classification_report(y_test, y_predict))

          precision    recall  f1-score   support

           0       0.77      0.91      0.83       248
           1       0.75      0.50      0.60       136

   micro avg       0.76      0.76      0.76       384
   macro avg       0.76      0.70      0.72       384
weighted avg       0.76      0.76      0.75       384

The results were nearly the same as when we used Keras as a neural network.

https://dev.blogs.bmc.com/blogs/keras-neural-network-classification/

