REDIS CLUSTERING AND PARTITIONING FOR BEGINNERS

One way to boost the performance of Redis is to put all records with the same keys into the same
node. In that case only one node needs to be read when looking for values with that key. Here we
explain the principles behind that.

Suppose you want to separate customers, employees, and vendors into separate nodes. The way to
do that would be to:

* set up a Redis cluster.
* assign cluster slots to specific nodes in the cluster.

Then write data for each customer like this, where the hset function sets the key using the hash slot
function function:

hset {customer}.dodgedealer car "dodge" year 2016
hset {customer}.forddealer car "ford" year 2016

In this example, both car dealers Dodge and Ford will be assigned to the same hash slot, and thus
the same node, since the curly braces {l determines what part of the key is used to calculate the
hash slot.

Redis assigns keys to nodes by calculating the hash slot like this:
CRC16(key) mod 16384

CRC16 is a hashing function (i.e., converts a string to a number) and mod 16384 means modulus
16384. Modulus is the integer remainder when dividing an integer by the modulus. For example, 4
mod 2 = 0 because 2 divides 4 evenly.3mod 2 =1since3=(2"1) +1.



CRC16(key) mod n will always produce the same result. So it yields a predictable value suitable for
this assignment. To see that open a Redis shell and type what is shown below.

The first command adds the hash slot to the node to which you have attached

CLUSTER ADDSLOTS 10528
OK

Then we show on the screen what the hash slot value of the key walker would be:

CLUSTER KEYSLOT walker
(integer) 10528

Now assign a key and write it to this node:

hset walker "walker"
(error) CLUSTERDOWN The cluster is down

We get an error CLUSTERDOWN because | have not yet set up the cluster, only one node in the
cluster

Below we show how to set up nodes in a cluster. If you want to automate the whole process install
Ruby and then run this Ruby program following these instructions.

Create Redis Instance

Install Redis following these instructions and then:

Make 3 directories for 3 instances:
mkdir 7001 7002 7003
Into each of these folders copy this redis.conf, changing the port number as you do.

port 7001

cluster-enabled yes
cluster-config-file 7001.nodes.conf
cluster-node-timeout 5000
appendonly yes

Now start each instance;

nohup src/redis-server 7001/redis.conf >7001.1log 2>&1&
nohup src/redis-server 7002/redis.conf >7002.log 2>&1&
nohup src/redis-server 7003/redis.conf >7003.1log 2>&1&

Check the logs to see each started:

tail 7001.1log
19908:M 18 Jan 01:10:27.927 * Ready to accept connections

Now pick one hode and connect to it. Notice that since we have not run the Ruby program the
nodes are not aware of each other. So this is not a complete cluster install. But it is enough to show
you how to set up key partitioning. The Ruby program updates these node files to put in


http://download.redis.io/redis-stable/src/redis-trib.rb
https://redis.io/topics/cluster-tutorial
https://dev.blogs.bmc.com/blogs/apache-redis-in-memory-database/

master/slave/replica/nodes and other info, which makes the cluster complete.
redis-cli -h localhost -p 7001

responds:

localhost:7001>

Ask the node what other nodes there are and it shows the configuration only for itself.

cluster nodes

>eeba92cc34ef032dalf5dbcf7450b93acadbf62f :7001@17001 myself,master - 0 0 O
connected

localhost:7001>

See below we have not assigned any hash_slot to this node yet:

cluster info

cluster state:fail
cluster_slots_assigned:0
cluster_slots ok:0
cluster slots pfail:o0

cluster slots fail:0
cluster_known_nodes:1

cluster size:0

cluster current epoch:0
cluster my epoch:0

cluster stats messages sent:0
cluster stats messages received:0

Alternate Techniques
There are other ways to do this including using the Redis proxy written by Twitter.

Twitter says theses companies are using it:

e Twitter

e Wikimedia
e Pinterest
e Snapchat
e Flickr

e Yahoo!

e Tumblr


https://github.com/twitter/twemproxy

