
READING STREAMING TWITTER FEEDS INTO APACHE SPARK

In part 1 of this blog post we explained how to read Tweets streaming off Twitter into Apache Kafka.
Here we explain how to read that data from Kafka into Apache Spark. We broke this document into
two pieces, because this second piece is considerably more complicated.

Prerequisites
First install Kafka as shown in Part 1 to verify that you can retrieve tweets from Twitter. Then start
Kafka and run that Python program documented there. It will still be downloading Tweets into Kafka.
Keep it running until you run the code below. Or just remember to start it before you run the code
below.

It is difficult to get this code working mainly because you have to get the right versions of the jar files
that will work with the version of Spark and Kafka you are using. Getting those mismatched will
generate all kinds of hours you will spend hours debugging. It is not always clear what version to
use. And sowing other confusing then there are sample code versions on the Apache Spark website
that conflict with other versions.

So if you want to avoid those kinds of errors, use the exact versions that we have here, which are
shown below. Or forge ahead with the new versions that will be delivered after this blog post is
written, taking care to get compatible versions of each.

Now, install Kafka and Spark:

Kafka 2.12-0.10.2.1
Kafka-clients-0.10.2.1.jar (Gets installed when you install Kafka.)

https://dev.blogs.bmc.com/blogs/working-streaming-twitter-data-using-kafka/

Spark-streaming-kafka-0-10_2.11-2.1.1.jar (You need to download this as explained below.)
Apache Spark 2.1.1
Scala 2.11.8 (You do not need to install Scala. It is installed when you install Spark.)

We will also be using sbt, which is a tool for compiling Scala code and resolving all dependencies,
so you need to install that. Sbt is very complicated, but you do not have to master that. Just know
that you need to put the code into this folder structure:

/ProjectHome: build.sbt (explained below)
/ProjectHome/src/main/scala/scala code (explained below).

Copy jar files
Now, the build.sbt file we write below will resolve all the import statements to make your code
compile. But it will not install the Kafka and Spark-streaming-kafka jar files to where you need them.
The easier way to fix that is copy them to $SPARK_HOME/jars as Spark can obviously find them
there, in its own folder.

One of these files you copy from the Kafka lib folder:

cp /usr/share/kafka/kafka_2.12-0.10.2.1/libs/kafka-clients-0.10.2.1.jar
$SPARK_HOME/jars

The second one you download from the internet as it is neither part of Spark nor Kafka:

wget https://spark.apache.org/docs/2.0.0-preview/streaming-kafka-integration.html

Now, in /ProjectHome create the file build.sbt and then copy the text shown below. It is not
necessary to understand what it all means. But you are free to investigate that. Basically it indicates
the external dependencies required and their version number. If you are a Scala or Java programmer
you will know that those files are available on the internet at, for example here at Maven Central.
There is where you get the syntax for the SBT dependencies which look something like this:

libraryDependencies += "org.apache.spark" % "spark-streaming-kafka-0-10_2.11" % "2.1.1"

import AssemblyKeys._
name := "TwitterStream"
version := "1.0"
libraryDependencies ++= {
val sparkVer = "2.1.1"
Seq(
"org.apache.spark" %% "spark-core" % sparkVer,
"org.apache.spark" %% "spark-mllib" % sparkVer,
"org.apache.spark" %% "spark-streaming" % sparkVer,
"org.apache.spark" % "spark-streaming-kafka-0-10_2.11" % sparkVer,
"org.apache.kafka" % "kafka-clients" % "0.10.2.1"
)
}
scalaVersion := "2.11.8"
assemblySettings
mergeStrategy in assembly := {

https://spark.apache.org/docs/2.0.0-preview/streaming-kafka-integration.html
https://mvnrepository.com/artifact/org.apache.spark/spark-streaming-kafka-0-10_2.11/2.1.1

case m if m.toLowerCase.endsWith("manifest.mf") => MergeStrategy.discard
case m if m.toLowerCase.matches("meta-inf.*\\.sf$") => MergeStrategy.discard
case "log4j.properties" => MergeStrategy.discard
case m if m.toLowerCase.startsWith("meta-inf/services/") =>
MergeStrategy.filterDistinctLines
case "reference.conf" => MergeStrategy.concat
case _ => MergeStrategy.first
}

The Scala code
Here we explain each section of the code, which we store in
/ProjectHome/src/main/scala/TwitterStream.scala.

The first part are the imports. Again it is important to use these so they match the files imported with
build.sbt to avoid compile errors.

import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.streaming.kafka010._
import
org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe
import org.apache.spark.SparkConf
import org.apache.spark.streaming._

Here we create an object called TwitterStream. Sbt will create jar file that we will run with spark-
submit. We need to give that class name to use, which in this case is TwitterStream.

kafkaParams gives the name or names of the Kafka server(s) where Kafka is running and which port.
Group id is supposed to have some value, so we just take the value from an Apache example. The
other parts tell it what objects to use to convert the data in Kafka, which in this case is
org.apache.kafka.common.serialization.StringDeserializer.

The first values we create as a SparkConf and StreamingContext. We don’t need to create a
SparkContext as spark-submit will do that for us.

object TwitterStream {
def main(args: Array) {
val kafkaParams = Map(
"bootstrap.servers" -> "localhost:9092",
"key.deserializer" -> classOf,
"value.deserializer" -> classOf,
"group.id" -> "use_a_separate_group_id_for_each_stream",
"auto.offset.reset" -> "latest",
"enable.auto.commit" -> (false: java.lang.Boolean)
)
val sparkConf = new SparkConf().setAppName("tweeter")
val ssc = new StreamingContext(sparkConf, Seconds(2))

Now, in part 1 we decided to get Tweets that had the topic trump, as there are obviously plenty of
those. Those have to be an Array to pass to the KafkaUtils.createDirectStream function.

That functions creates a DStream. For Spark Streaming this is designed to contained streaming data.
You cannot actually do much with a DStream until you turn it into an RDD, which we do below. So
this points to the irony that while these types products, like Spark, are called streaming, they
obviously have to take some discrete, fixed chunk of data to work on it. That is what a RDD is. In fact,
the DStream will create multiple RDDs.

val topics = Array("trump")
val stream = KafkaUtils.createDirectStream(
ssc,
PreferConsistent,
Subscribe(topics, kafkaParams)
)

KafkaUtils.createDirectStream creates a org.apache.spark.streaming.dstream.DStream.

To work with that data we use the Dstream.foreach() method to pluck off RDDs as they are created.
Then we use RDD.foreach() to get each object in the RDD. Those objects will be Kafka
ConsumerRecords, i.e., org.apache.kafka.clients.consumer.ConsumerRecord. You use the
ConsumerRecord.value() method to read the message retrieved from the Kafka topic.

The Twitter messages are in JSON format, whose contents are described here. If you are doing
analytics on this data you would not print it out. But we do that below to show that our sample is
working.

ssc.start() ssc.awaitTermination() will start the streaming jon, which will continually run it until you
kill it with (control-)(-c-).

stream.foreachRDD { rdd =>
rdd.foreach { record =>
val value = record.value()
val tweet = scala.util.parsing.json.JSON.parseFull(value)
val map:Map = tweet.get.asInstanceOf]
println(map.get("text"))
}
}
ssc.start()
ssc.awaitTermination()
}
}

To compile this code go to /ProjectHome and run:

sbt package

The first time you do that is will take quite a long time as it will download many items from the
internet.

https://dev.twitter.com/overview/api/tweets

Run the job in Spark
Now you run the job using $SPARK_HOME/bin/spark-submit passing is the class name and the
name of the jar file that sbt created, which will be
/ProjectHome/arget/scala-2.11/twitterstream_2.11-1.0.jar . local means use x number of cpus. *
means use all of them.

spark-submit \
--class TwitterStream \
--master local \
/home/walker/Documents/target/scala-2.11/twitterstream_2.11-1.0.jar

Now the program will run and output the Tweet text in a continuous stream. As you can see below it
is creating RDDs as it runs too:

Some(RT @Cernovich: That baby ran away crying when @CassandraRules and I put cameras on
him during the DNC. Totally irrelevant and has…)
Some(Trump Approval Rating Tanks: Majority Says He’s ‘Too Friendly With Russia’
https://t.co/gUSH4oI2Rc via Christine Beswick)
17/06/10 12:08:39 INFO Executor: Finished task 0.0 in stage 3.0 (TID 3). 998 bytes result sent to driver
17/06/10 12:08:39 INFO TaskSetManager: Finished task 0.0 in stage 3.0 (TID 3) in 1344 ms on
localhost (executor driver) (1/1)
17/06/10 12:12:59 INFO TaskSchedulerImpl: Removed TaskSet 14.0, whose tasks have all completed,
from pool
17/06/10 12:12:59 INFO DAGScheduler: ResultStage 14 (foreach at TwitterStream.scala:32) finished in
1.147 s
17/06/10 12:12:59 INFO DAGScheduler: Job 14 finished: foreach at TwitterStream.scala:32, took
1.156825 s
17/06/10 12:12:59 INFO JobScheduler: Finished job streaming job 1497111178000 ms.0 from job set
of time 1497111178000 ms
17/06/10 12:12:59 INFO JobScheduler: Total delay: 1.172 s for time 1497111178000 ms (execution:
1.166 s)
17/06/10 12:12:59 INFO KafkaRDD: Removing RDD 13 from persistence list

