
OBSERVABILITY VS MONITORING: WHAT'S THE DIFFERENCE?

Enterprise IT and software-driven consumer product development are increasingly complex. The
internet delivers IT infrastructure services from vast data centers at distant geographic locations.
Companies consume these services as distributed functions like microservices and containers,
across layers of infrastructure and platform services. Consumers expect rapid feature improvements
through new releases via the internet.

To meet these end-user requirements, IT service providers and business organizations must
streamline performance and improve stability and predictability of backend IT infrastructure
operations—amid the inherent complexity of the IT systems. To do so, we closely observe and
monitor metrics and datasets related to infrastructure performance in order to optimize system
dependability.

These days, observability might seem like a buzzword; in fact, this traditional concept drives
monitoring processes. Both the system observability and monitoring play critical roles in achieving
system dependability—but they’re not the same thing. Let’s understand the differences between
observability and monitoring, and how they are both critical to visibility and control in cloud-based
enterprise IT operations.

What is observability?
Observability is the ability to infer internal states of a system based on the system’s external outputs.
In control theory, observability is a mathematical dual (follows a direct conceptual mapping) to

https://en.wikipedia.org/wiki/Observability


controllability, which is the ability to control internal states of a system by manipulating external
inputs. In practice, however, controllability is difficult to evaluate mathematically; therefore, system
observability is the method for evaluating outputs to reach meaningful conclusions about internal
states of the system.

In enterprise IT, distributed infrastructure components operate through multiple abstraction layers of
software and virtualization. This environment makes it impractical and challenging to analyze and
compute system controllability.

Instead, common practice is to observe and monitor infrastructure performance logs and metrics to
understand the performance of individual hardware components and systems. Advanced log
analytics and AI (AIOps) evaluate incidents and events related to hardware performance in order to
predict potential impact on system dependability. Then, your IT team can proactively adopt
corrective measures to reduce the impact on end-users.

What is monitoring?
Observability is the ability to infer a system’s internal states. Monitoring, then, is defined as the
actions involved in observability: observing the quality of system performance over a time duration.
The monitoring action, which tools and processes support, can describe the performance, health,
and relevant characteristics of a system’s internal states. In enterprise IT, monitoring refers
specifically to the process of translating infrastructure log metrics data into meaningful and
actionable insights.

A system’s observability property includes how well the infrastructure log metrics can infer the
performance characteristics associated with infernal components. Monitoring tools analyze the
infrastructure log metrics to deliver actions and insights.

Comparing observability and monitoring
Let’s use an example of a large, complex data center’s infrastructure system that’s monitored using
log analysis and monitoring and ITSM tools. Analyzing too many data points continuously will
generate volumes of unnecessary alerts, data, and false flags. The infrastructure may present low
observability characteristics, unless the correct metrics are evaluated and the unnecessary noise is
carefully filtered using AI-based infrastructure monitoring solutions.

On the other hand, a single server machine can be easily monitored using metrics and parameters
such as hardware energy consumption, temperature, data transfer rates, and processing speed.
These parameters are highly correlated with the health of internal system components. Therefore,
the system has demonstrated high observability. Using basic monitoring tools, such as energy and
temperature measurement instruments, or software-based monitoring tools, the performance, life
expectancy, and risk of potential performance incidents can be evaluated proactively.

The observability of a system depends on the system’s simplicity, the insightful representation of the
performance metrics, and the capability of the monitoring tools to identify the correct metrics. This
combination yields the necessary insights to illustrate an accurate representation of the internal
states, despite a system’s inherent complexity.

https://dev.blogs.bmc.com/blogs/what-is-aiops/
https://dev.blogs.bmc.com/blogs/reactive-vs-proactive-problem-management/
https://dev.blogs.bmc.com/blogs/reactive-vs-proactive-problem-management/
https://dev.blogs.bmc.com/blogs/monitoring-logging-tracing/


Observability in DevOps
The concept of observability is prominent in DevOps software development lifecycle (SDLC)
methodologies. In earlier waterfall and agile frameworks, developers built new features and product
lines while separate testing and operations teams tested for software dependability. This siloed
approach meant that infrastructure operations and monitoring activities were beyond development’s
scope. Projects were developed for success and not for failure: debuggability of the code was rarely
a primary consideration. Infrastructure dependencies and application semantics were not
adequately understood by the developers. Therefore, apps and services were built with low inherent
dependability. Monitoring failed to yield sufficient information about the known-unknowns, let alone
the unknown-unknowns, of distributed infrastructure systems.

The prevalence of DevOps has transformed SDLC. Monitoring goals are no longer limited to
collecting and processing log data, metrics, and distributed event traces; monitoring is now used to
make the system more observable. The scope of observability therefore encompasses the
development segment and is facilitated by people, processes, and technologies operating across
the SDLC pipeline.

Collaboration among cross-functional Devs, ITOps, and QA personnel is critical when designing a
dependable system. Communication and feedback between developers and operations teams is
necessary to achieve observability targets of the system that will help QA yield correct and insightful
monitoring during the testing phase. As a result, DevOps teams can test systems and solutions for
true real-world performance. Continuous iteration based on performance feedback can further
enhance IT’s ability to identify potential issues in the systems before the impact reaches end-users.

In many ways, observability has a strong human element, similar to DevOps: it’s not limited to
technologies but also covers the approach, organizational culture, and priorities in reaching
appropriate observability targets, and hence, value of monitoring initiatives.

Additional Resources
Observability for modern applications from Boaz Ziniman and MoovingON

https://dev.blogs.bmc.com/blogs/devops-basics-introduction/
https://dev.blogs.bmc.com/blogs/devops-basics-introduction/
https://dev.blogs.bmc.com/blogs/sdlc-software-development-lifecycle/
https://dev.blogs.bmc.com/blogs/itops-devops-and-noops-oh-my/
https://www.slideshare.net/MoovingON/observability-for-modern-applications-153344484
https://www.slideshare.net/BoazZiniman/presentations
https://www.slideshare.net/MoovingON

