NEO4) GRAPH DATABASE QUERIES

In the previous blog post, where we introduced Neo4j. Here we explain queries.

First, start the server then open the shell:

cd neo4j bin
./neo4j start

./cypher-shell -a bolt://localhost:7687 -u neodj -p XXX

Create Node and Relations

Here we create two nodes. They each have label Friends and a name property. Relations both can
have properties can have properties too.

CREATE (x:Friends { name: 'Walker' })
CREATE (y:Friends { name: 'Stephen' })
return Xx,y;

https://dev.blogs.bmc.com/blogs/neo4j-graph-database/

| (:Friends {name: "Walker"}) | (:Friends {name: "Stephen"}) |

1 row available after 15 ms, consumed after another 0 ms
Added 2 nodes, Set 2 properties, Added 2 labels

Note: Spelling and case is important. Neo4j give you no warning if anything is spelled wrong. So pay
attention when creating, for example, relationships as they will be empty with no warning given. So
look for created x relationships and x rows available after each statement to make sure it worked.

We then create a relationship (called an edge) from Stephen to Walker. We give this relation the
arbitrary name Friend. \We put letters x, y, and r in front of objects so that we can refer to them in
subsequent steps. So it is shorthand notation. Plus it brings the created object into scope.

The procedure to create a relation is to bring the nodes together with a MATCH and WHERE
statement, then issue the CREATE with a directional arrow, to indicate the direction of the relation, or
a simple ling, if it runs both ways. For example, if Stephen is a Friend of Walker then Walker is a
Friend of Stephen. So the arrow could be a simple line.

You use double lines --,, when you want to indicate direction in queries (i.e, MATCH) statement, but
not in the creation statement.

MATCH (x:Friends), (y:Friends)

WHERE y.name = "Stephen" AND x.name = "Walker"
CREATE (x)-->(y)

RETURN type(r);

o - +
| type(r) |
T +
| "Friend" |
R L +

List all Friend Nodes

Now, let's try different queries. This one lists lists all nodes, since we did not give it any WHERE
condition.

match(n:Friends)
return n;

| (:Friends {name: "Walker"}) |
| (:Friends {name: "Stephen"}) |

List all Friend relations.

MATCH (a:Friends)-->(b:Friends)

RETURN a.name, b.name;

R T +
| a.name | b.name |
R +
| "Walker" | "Stephen" |
- +

Make Raj friends of Stephen.
CREATE (y:Friends { name: 'Raj' });

MATCH (x:Friends), (y:Friends)

WHERE y.name = "Stephen" AND x.name = "Raj"
CREATE (x)-->(y)

RETURN type(r);

Make sure the command(mainly the MATCH statement) worked by paying attention to the numbers
returned. Remember what we said about spelling errors and case.

1 row available after 3 ms, consumed after another 0 ms
Created 1 relationships

Show all friends relationships. Note it now includes the one we just added

MATCH (a:Friends)-->(b:Friends)
RETURN a.name, b.name;

LT +
| a.name | b.name |
R T +
| "Walker" | "Stephen" |
| "Raj" | "Stephen" |
R T +

Add 1 more, Teresa, then make her a Friend with Raj.

CREATE (x:Friends { name: 'Teresa' })
return x;

MATCH (x:Friends), (y:Friends)
WHERE y.name = "Stephen" AND x.name = "Raj"
CREATE (x)-->(y);

MATCH (x:Friends), (y:Friends)

WHERE y.name = "Raj" AND x.name = "Teresa"
CREATE (x)-->(y)

RETURN type(r);

Below we shown are friends of friends who are not of each other. That would be Teresa and
Stephen are not friends.

To put this in terms of mathematics, which might make it simpler to understand, we could say that

we look for the intersection of the set u and notFriend and then applying WHERE NOT that find
objects outside that intersection.

To recall what friends we have to make this easier to see, first;

Match (a:Friends)--(b)
return a,b;

:Friends {name: "Walker"})
:Friends {name: "Stephen"})
:Friends {name: "Stephen"})
:Friends {name: "Stephen"})
:Friends {name: "Raj"})
:Friends {name: "Raj"})
:Friends {name: "Raj"})
:Friends {name: "Teresa"})

:Friends {name: "Stephen"})
:Friends {name: "Raj"})
:Friends {name: "Raj"})
:Friends {name: "Walker"})
:Friends {name: "Teresa"})
:Friends {name: "Stephen"})
:Friends {name: "Stephen"})
:Friends {name: "Raj"})

The friends who.are-not-friends-of query lists Teresa and Stephen because Teresa is not a friend of
Stephen. In other words, the first part of the query shows all relations for those people listed in
variable u then it lists who is not in u.

Match (u:Friends)-->(:Friends)-->(notFriend:Friends)
WHERE NOT (u)-->(notFriend)
RETURN u, notFriend;

| (:Friends {name: "Teresa"}) | (:Friends {name: "Stephen"}) |
| (:Friends {name: "Teresa"}) | (:Friends {name: "Stephen"}) |

Directed Relations

Now we create a relationship in the opposite direction Friend A < - Friend B instead of Friend A ->
Friend B by putting the directional arrow in the first position in the CREATE statement.

MATCH (x:Friends), (y:Friends)

WHERE y.name = "Raj" AND x.name = "Teresa"
CREATE (x)< --(y)

RETURN type(r);

Now list all relations, first the left-hand then non-directional then going rightward. An outbound
relationship from a Friends node to another is the same as an inbound relationship since the nodes
are the same. So the first and last queries list the same 4 relations. And a bi-directional query lists 8
since an inbound and an outbound both qualify as a relation in either direction, which is what the --
means..

It would be simpler to see all of this if we had called one set of nodes Customers and another
AccountManager, since there will be no logical symmetry. We will build up examples like that is
subsequent blog posts.

----------------- + | (:Friends {name: "Stephen"}) | (:Friends {name: "Raj"})
| | (:Friends {name: "Stephen"}) | (:Friends {name: "Raj"}) | | (:Friends
{name: "Stephen"}) | (:Friends {name: "Walker"}) | | (:Friends {name: "Raj"})
| (:Friends {name: "Teresa"}) | +--------------mmmmmmmm i
---------------- + Match (a:Friends)--(b) return a,b; +--------------c----

----------------------------------- + | (:Friends {name: "Walker"}) |

(:Friends {name: "Stephen"}) | | (:Friends {name: "Stephen"}) | (:Friends
{name: "Raj"}) | | (:Friends {name: "Stephen"}) | (:Friends {name: "Raj"}) |
| (:Friends {name: "Stephen"}) | (:Friends {name: "Walker"}) | | (:Friends
{name: "Raj"}) | (:Friends {name: "Teresa"}) | | (:Friends {name: "Raj"}) |
(:Friends {name: "Stephen"}) | | (:Friends {name: "Raj"}) | (:Friends {name:
"Stephen"}) | | (:Friends {name: "Teresa"}) | (:Friends {name: "Raj"}) | +---

-- + 8 rows available
after 22 ms, consumed after another 2 ms Match (a:Friends)-->(b)
return a,b;

(:Friends {name: "Stephen"}
(:Friends {name: "Stephen"}
(:Friends {name: "Stephen"}
(:Friends {name: "Raj"})

(:Friends {name: "Walker"})
(:Friends {name: "Raj"})
(
(

N— N N

:Friends {name: "Raj"})
:Friends {name: "Teresa"})

4 rows available after 24 ms, consumed after another 2 ms

