
MODERN BATCH: MANAGING THE MADNESS?

My previous installment in this series explored what batch,(or application workflow orchestration) is,
and how it still remains an essential discipline in computing. This time, I want to focus on the value of
a batch/workflow approach for “modern” technologies like cloud, containers, microservices and
serverless computing.

It may be ironic that the management approaches and best practices that have evolved over the
years in managing enterprise batch computing may be exactly what’s needed in today’s modern,
elastic environments.

Managing Business Applications
As soon as you have more than a single business function or even a single function consisting of
multiple components, you have a management requirement. You need to be able to:

Determine whether things that are running should be running
See whether there are any things that should be running but are not
Have visibility into whether what’s running is running on time or correctly (as opposed to just
looping or waiting)
See confirmation that notification of a failure occurred and tools and facilities to analyze and
correct the problem are mobilized

The challenge of meeting the above basic requirements increases with the number of components

https://dev.blogs.bmc.com/blogs/modern-batch-batch-not-batch-theres-no-question/


and technologies in use to implement a business function.

Modern applications may contain components that use traditional relational databases or newer
ones like noSQL, traditional file systems or Hadoop Distributed File Systems, ERPs, SaaS solutions,
etc.

Architectures may consist of traditional hierarchical flows, be message-based with a
“publish/subscribe” relationship among application components or take a microservices approach.

For all these varieties of application structure, operational instrumentation remains a requirement
that development, DevOps and IT Ops teams must address to meet the service delivery demands of
the business.

The Value of Batch Management in a Modern Environment
In these evolved environments, applications still defer processing until either some data is
aggregated or some other collection of events occurs before subsequent processing is performed.
Furthermore, whether waiting for events, which is just the modern equivalent of date and time,
processes have to connect to databases and other applications, logs must be captured, visibility of
these relationships is required, etc. All these actions are part of what “automation” means, and in the
absence of any other way to accomplish it, developers frequently fall back to using basic tools
which lead to custom development of automation that is either embedded in application code or in
scripts. If one wants to argue the need for such management, just examine EVERY modern
environment, whether it’s the leading ERP, database, Big Data, or cloud providers. ALL these
environments keep reinventing a batch management solution. If this was not a fundamental
requirement, we would not continue to see SM36/SM37, SQL Agent scheduler, Oozie, Airflow,
Azkaban, Luigi, Chronos, Azure Batch and most recently AWS Batch, AWS Step Functions and AWS
Blox to join AWS SWF and AWS Data Pipeline.

The problems with all these tools are:

Their solutions assume that their application or ecosystem is the only one you will ever use so
they don’t even acknowledge existence of other environments or technologies
Building a comprehensive, sophisticated solution is hard and takes a long time, and so far,
precious few solutions have been able to meet the diverse requirements I’ve been discussing
here

Recently, yet another challenge has emerged that makes all the above even more challenging:
digital transformation. The pressure to accelerate delivery of new business capabilities that run
reliably and meet the stringent risk and governance requirements is immense. Having to do that
while still supporting and frequently integrating “traditional” technologies makes the challenge that
much greater.

Many organizations have turned to DevOps as one of the techniques to enable them to meet the
delivery expectations of the business. Although DevOps enables faster delivery, it does little to
improve operational tools that are deficient in the level of visibility and manageability they offer in
the production environment. Requirements for a DevOps toolset to help address those issues
include:

Support highly heterogeneous collections of platforms and applications
Understand business service levels

https://dev.blogs.bmc.com/blogs/devops-basics-introduction/
https://dev.blogs.bmc.com/blogs/what-is-digital-transformation/


Provide a way to visualize connections among components across that heterogeneity
Support quick access to debugging and problem analysis data or offer business users insights
into their workloads

The answer may lie in working backwards. Find a solution that provides the functionality you need to
run your production environment, not your development environment. After all, that’s where the
rubber meets the road so to speak.

You won’t find many toolsets that can give you the broad functionality you require but there are
some. And then find which of those solutions has been DevOps-enabled. That may be an even
smaller subset. However, don’t compromise by choosing a tool that’s comfortable to use and deploy
for developers but not for the diverse users in production. Remember that applications spend the
vast majority of their lives in production and that is the target environment you should aim for.

This is the third of a 4-part blog series on “modern batch.” You can read the other blogs here:

Part 1: Modern Batch Processing: A Thing of the Past or Essential Discipline?
Part 2: Modern Batch: To Batch or Not to Batch? There’s no Question!
Part 4: Modern Batch: The Ops in DevOps fully evolved – “Jobs-as-Code!”

https://dev.blogs.bmc.com/blogs/modern-batch-processing-thing-past-essential-discipline/
https://dev.blogs.bmc.com/blogs/modern-batch-batch-not-batch-theres-no-question/
https://dev.blogs.bmc.com/blogs/modern-batch-ops-devops-fully-evolved-jobs-code/

