
MICROSERVICES VS SOA: HOW ARE THEY DIFFERENT?

Microservices Architecture (MSA) and Service-Oriented Architecture (SOA) both rely on services as
the main component. But they vary greatly in terms of service characteristics.

SOA defines four basic service types as depicted below:

Business services are coarse-grained services that define core business operations. They are
usually represented through XML, Web Services Definition Language (WSDL), or Business Process
Execution Language (BPEL).

Enterprise services implement the functionality defined by business services. They rely on

https://www.dev.blogs.bmc.com/microservices-architecture-introduction-microservices/
https://www.dev.blogs.bmc.com/service-oriented-architecture-overview/


application services and infrastructure services to fulfill business requests.

Application services are fine-grained services that are bound to a specific application context.
These services can be invoked directly through a dedicated user interface.

Infrastructure services implement non-functional tasks such as authentication, auditing, security,
and logging. They can be invoked from either application services or enterprise services.

MSAs have limited service taxonomy. The architecture consists of two service types as depicted
below.

Functional services
support specific business operations. The services are accessed externally and they are usually not
shared with any other service. As in SOA, infrastructure services implement tasks such as auditing,
security, and logging. The services are not exposed to the outside world and they are available
internally.

Key Differences Between SOA and MSA



 

SOA MSA

Built on the idea of a “share-as-much-as-
possible” architecture approach

Built on the idea of “share-as-little-as-possible”
architecture approach



SOA MSA

More importance on business functionality reuse
More importance on the concept of “bounded
context”

Common governance and standards
Relaxed governance, with more focus on people
collaboration and freedom of choice

Uses enterprise service bus (ESB) for
communication

Uses less elaborate and simple messaging
system

Supports multiple message protocols
Uses lightweight protocols such as HTTP/REST
& AMQP

Common platform for all services deployed to it
Application Servers not really used. Platforms
such as Node.JS could be used

Multi-threaded with more overheads to handle
I/O

Single-threaded usually with use of Event Loop
features for non-locking I/O handling

Use of containers (Dockers, Linux Containers)
less popular

Containers work very well in MSA

Maximizes application service reusability More focused on decoupling

Uses traditional relational databases more often Uses modern, non-relational databases

A systematic change requires modifying the
monolith

A systematic change is to create a new service

DevOps / Continuous Delivery is becoming
popular, but not yet mainstream

Strong focus on DevOps / Continuous Delivery

Let's Explore the Differences in More Detail:
Coordination: In SOA, you need to coordinate with multiple groups to create business
requests. But there is little or no coordination among services in MSA. If coordination is needed
among service owners, it is done through small application development teams, and services
can be quickly developed, tested, and deployed.
Service granularity: The prefix “micro” in Microservices refers to the granularity of the internal
components. Service components within MSA are generally single purpose services that do
one thing really well. Services usually include much more business functionality in SOA, and
they are often implemented as complete subsystems.
Component sharing: SOA enhances component sharing, whereas MSA tries to minimize on
sharing through “bounded context.” A bounded context refers to the coupling of a component
and its data as a single unit with minimal dependencies. As SOA relies on multiple services to
fulfill a business request, systems built on SOA are likely to be slower than MSA.
Middleware vs API layer: The messaging middleware in SOA offers a host of additional
capabilities not found in MSA, including mediation and routing, message enhancement,
message and protocol transformation. MSA has an API layer between services and service
consumers.
Remote services: SOA architectures rely on messaging (AMQP, MSMQ) and SOAP as primary
remote access protocols. Most MSAs rely on two protocols - REST and simple messaging
(JMS, MSMQ), and the protocol found in MSA is usually homogeneous.
Heterogeneous interoperability: SOA promotes the propagation of multiple heterogeneous

https://dev.blogs.bmc.com/blogs/devops-basics-introduction/


protocols through its messaging middleware component. MSA attempts to simplify the
architecture pattern by reducing the number of choices for integration. If you would like to
integrate several systems using different protocols in heterogeneous environment, you need
to consider SOA. If all your services could be exposed and accessed through the same remote
access protocol, then MSA is a better option.
Contract decoupling: Contract decoupling is the holy grail of abstraction. It offers the greatest
degree of decoupling between services and consumers. It is one of the fundamental
capabilities offered within SOA. But MSA doesn't support contract decoupling.

Microservices are not invented. Enterprises such as Amazon, Netflix, and eBay used the divide and
conquer strategy to functionally partition their monolithic applications into smaller units, and
resolved many issues. Following the success of these companies, many other companies started
adopting this as a common pattern to refactor their applications. Eventually the pattern was termed
as Microservices Architecture. Nothing radically new has been introduced in MSA. MSA is the logical
evolution of SOA and supports modern business use cases.

Which is Better for Our Business?
SOA is better suited for large and complex business application environments that require
integration with many heterogeneous applications. However, workflow-based applications that have
a well-defined processing flow are a bit difficult to implement using SOA patterns. Small
applications are also not a good fit for SOA as they don’t need a messaging middleware component.
The MSA pattern is well suited for smaller and well partitioned web-based systems. The lack of
messaging middleware is one of the factors that makes it unfit for complex environments.

If you are developing an application, then MSA gives you greater control as a developer. If you are
trying to orchestrate a number of business processes, SOA probably provides a better set of tools.

Also, in the early stages of your business, you might find that MSA is a good choice. As the business
grows, you may need capabilities such as complex request transformation and heterogeneous
systems integration. In such situations, you are likely to turn to SOA pattern to replace MSA.

Both SOA and MSA are the same set of standards used at different layers of an enterprise. The
existence of MSA comes down to the success of SOA pattern. Hence, MSA pattern is a subset of
SOA. Here the main focus is on the runtime autonomy of each service.

Additional Resources
SOA to Microservices from ceposta

Original reference images:

https://www.slideshare.net/ceposta/soa-to-microservices
https://www.slideshare.net/ceposta



