
HOW TO APPLY MACHINE LEARNING TO CYBERSECURITY

In this article, we’ll show how to apply machine learning to cybersecurity. There are several use
cases, but this article will focus on analyzing router logs.

Why use machine learning with cybersecurity
It's almost impossible for an analyst looking at a time series chart of network traffic to draw any
conclusion from what they are looking at. Why? People can’t see more than three dimensions.  And,
too many false alerts cause analysts to simply ignore some of what they’re seeing—too much noise.

But machine learning makes it possible to flush out, for example, criminal hackers who are stealing
data from your system and transmitting it to their command and control center.  This is what
intrusion detection systems are supposed to do, but hackers use all kinds of techniques to avoid
detection by traditional cybersecurity systems.  For example, they could transmit stolen data in
small pieces and send each to a different IP address, such as hijacked home computer users, then
use those hijacked computers to send those pieces to their hacker command and control center.

Machine learning helps us distill dozens or hundreds of data points into one or two metrics. Then, we
can build our charts and alerts around those. Now, those alerts are significantly more valuable.

In this example we’ll illustrate one approach to looking at network traffic. We use router logs
provided by Verizon from the Bro-type router. We’ll group each record into one of seven clusters,
then we’ll look at traffic in those clusters with the smaller number of entries.  That, by definition, are
our outliers.

https://dev.blogs.bmc.com/blogs/cybersecurity/
https://www.dev.blogs.bmc.com/deep-learning-vs-machine-learning/
https://www.dev.blogs.bmc.com/ids-intrusion-detection-vs-ips-intrusion-prevention-systems/


K-means clustering
We use the k-mean clustering algorithm, which separates data along any number of axes. (For
more, see k-means clustering with Apache Spark and Python Spark ML K-Means Examples or
browse our Apache Spark guide using the right-hand menu.)

A data scientist would say that we are threading a hyperplane into n-dimensional space between
the data points. Because we can’t visualize this, think of a 3D space, then thread a piece of paper
between each set of data points such that points in one group are on one side of the paper and
points in the other group are on the other.

This is an unsupervised model because there are no labels, only features. So, we don’t need to train
the model, as there’s nothing to predict. Instead we are observing.

The code, explained
The code is available here, and the data here. This is data from a network analysis tool called Zeek,
formerly called Bro.

The University of Cincinnati provides this description of the columns in this data:

ts—time; timestamp
uid—string; unique ID of connection
orig_h—addr; originating endpoint’s IP address (aka ORIG)
orig_p—port; originating endpoint’s TCP/UDP port or ICMP code
resp_h—addr; responding endpoint’s IP address (aka RESP)
resp_p—port; responding endpoint’s TCP/UDP port or ICMP code
proto—transport_protoTransport layer protocol of connection
service—string; dynamically detected application protocol, if any
duration—interval; time of last packet seen to time of first packet seen
orig_bytes—count; originator payload bytes, from sequence numbers if TCP
resp_bytes—count; responder payload bytes, from sequence numbers if TCP
conn_state—string; connection state (see conn.log:conn_state table)
local_orig—bool; if conn originated locally T; if remotely F. If Site::local_nets empty, always
unset
missed_bytes—count; number of missing bytes in content gaps
history—string; connection state history (see conn.log:history table)
orig_pkts—count; number of ORIG packets
orig_ip_bytes—count; number of ORIG IP bytes (via IP total_length header field)
resp_pkts—count; number of RESP packets
resp_ip_bytes—count; number of RESP IP bytes (via IP total_length header field)
tunnel_parents—set; If tunneled, connection UID of encapsulating parent (s)
orig_cc—string; ORIG GeoIP country dode
resp_cc—string; RESP GeoIP country code

First, we load the csv file into a Spark dataframe.

from pyspark.sql.types import StructType, StructField, FloatType, BooleanType
from pyspark.sql.types import DoubleType, IntegerType, StringType
import pyspark

https://dev.blogs.bmc.com/blogs/k-means-clustering-apache-spark/
https://dev.blogs.bmc.com/blogs/python-spark-k-means-example/
https://dev.blogs.bmc.com/blogs/supervised-vs-unsupervised-aiops-machine-learning/
https://github.com/werowe/cyberSecurityAnalytics/blob/master/verizon.ipynb
https://github.com/werowe/cyberSecurityAnalytics/blob/master/bigger.log.zip
http://gauss.ececs.uc.edu/Courses/c5155/pdf/bro_log_vars.pdf


from pyspark.ml.linalg import Vectors
from pyspark.ml.feature import VectorAssembler
from pyspark.sql.functions import lit
from pyspark.sql.functions import udf, concat

from pyspark import SQLContext

conf = pyspark.SparkConf()

sc = pyspark.SparkContext.getOrCreate(conf=conf)
sqlcontext = SQLContext(sc)

schema = StructType()

df = sqlcontext.read.csv(path="/home/ubuntu/Documents/forensics/bigger.log",
sep="\t", schema=schema)
df2 = df.fillna(0)

Next, we register a UDF (user defined function).  We will use this to turn all the fields sent to this
function into integers because machine learning, for the most part, only works with numbers.

colsInt = udf(lambda z: toInt(z), IntegerType())

sqlcontext.udf.register("colsInt", colsInt)

def toInt(s):
    if not s:
        return 0
    if isinstance(s, str) == True:
        st =
        return(int(''.join(st)))
    else:
        return s

Now, we create some additional columns which are the columns we have selected to feed into our
model. For each of these, we will call the colsInt() UDF to convert those to numbers.

You could vary the choice of columns according to what hypotheses you want to follow. For
example, below we look at the ports and traffic as well as the protocol.

There might be other metrics in that log that we could add or remove.
We should probably leave the destination IP address out of the model because of the hacker's
ability to hide their true destination.
We might drop the UDP protocol since sftp (which is TCP) would be the protocol they would
use to transmit that.
Or, we could include the time of day in the local time zone to isolate after-hours events.

It all depends on what kind of activity you want to focus on.

Note that each of the .withColumn() statements create a new dataframe. This is because Spark

https://www.dev.blogs.bmc.com/how-to-write-spark-udf-python/


dataframes are immutable.

a = df2.withColumn( 'iorigp',colsInt('origp'))
c = a.withColumn( 'irespp',colsInt('respp'))
d = c.withColumn( 'iproto',colsInt('proto'))
e = d.withColumn('iorigh',colsInt('origh'))
f = e.withColumn( 'iorigbytes',colsInt( 'origbytes'))
g = f.withColumn( 'irespbytes',colsInt('respbytes'))
h = g.withColumn(  'iorigpkts',colsInt( 'origpkts'))
i = h.withColumn( 'iorigipbytes',colsInt('origipbytes'))

columns =

The next step adds a column to our dataframe called features. This is a tuple of the columns we
have selected. The K-means algorithm will expect there to be a features column.

vecAssembler = VectorAssembler(inputCols=columns, outputCol="features")
router = vecAssembler.transform(i)

Here, we use the K-means algorithm. One nice thing about Apache Spark is its machine learning
algorithms are easy to use. They don’t require the reprocessing and reshaping that other
frameworks do, and they work with Spark dataframes, so we could work with much larger sets of
data. (Pandas does not scale like Spark dataframes do.)

from pyspark.ml.clustering import KMeans
from pyspark.ml.evaluation import ClusteringEvaluator

kmeans = KMeans().setK(7).setSeed(1)
model = kmeans.fit(router)

predictions = model.transform(router)

p = predictions.groupby('prediction').count()
q = p.toPandas()

We have grouped the observations into 7 clusters.  Cluster 0 has 40,303 router records, but cluster 2
has only 171. Clearly, those are outliers, so this is where we focus our cybersecurity analysis.



We can plot that as a bar chart to further show how the data is
clustered.

from plotly.offline import plot

import pandas as pd

import plotly.graph_objects as go
fig = go.Figure(
    data=,y=q)],
    layout_title_text="K Means Count"
)
fig.show()

Plotly uses JavaScript to create popups to give you more information where you place the cursor.
We've placed it at the point (prediction=2,count=121).



So,
let's make a new dataframe of just those records in cluster 2. (It's actually row index 5 in the
dataframe, so don't confuse those two concepts.)

suspect = predictions.filter("prediction == 2")

Here we convert the output to Pandas, simply because the Jupyter notebook displays that data
more clearly than it does dataframes, where it tends to chop off wide columns, making them hard to
read.

x = suspect.select('ts','uid','origh','resph').toPandas()

You can see the same IP address shown more than a few times, which is probably a good place for
further analysis. Look and see which machine it is and to whom it connects.



So
, your analysts can look through logs in your applications, firewall, etc. to see what’s going on with
those IP addresses. (Note that some of them are in IPv6 format.)


