
POSTGRESQL & K8S: RUN A STATEFUL LEGACY APP ON A
STATELESS MICROSERVICE

In this blog post, we are going to expand on a previous article about statefulsets. I'll show how to run
and work with a database application, such as PostgreSQL, in Kubernetes.

To follow along I assume you have a Kubernetes cluster running and are familiar with k8s Service,
Statefulset, Configmap, PersistentVolume, PersistentVolumeClaim and Docker images. (If you don't,
explore the K8s Guide, on the right). For us to deploy PostgresSQL on kubernetes, we need few
things:

Postgres Docker Image to deploy.
Configmap for storing Postgres configurations.
Postgres Statefulset to deploy the pods and to auto create the PV/PVC.
Postgres Service to expose the statefulset.

Setup
The first resource we need to create is the configurations we want to inject into postgres pod with a
configmap. We want to pass in the username, password and the database.

postgres-config.yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: postgres-config-demo

https://dev.blogs.bmc.com/blogs/kubernetes-operator/
https://dev.blogs.bmc.com/blogs/mongodb-vs-postgresql/

 labels:
 app: postgres
data:
 POSTGRES_DB: demopostgresdb
 POSTGRES_USER: demopostgresadmin
 POSTGRES_PASSWORD: demopostgrespwd

To create, simply run “kubectl create-f postgres-config.yaml”

Next resource to create is the postgres service so we can have multiple backends with a service that
other services can connect with. Resource for deployment looks like:

postgres-service.yaml

apiVersion: v1
kind: Service
metadata:
 name: postgres
 labels:
 app: postgres
spec:
 ports:
 - port: 5432
 name: postgres
 clusterIP: None
 selector:
 app: postgres

Next resource to create is postgres statefulset. Resource for statefulset looks like:

postgres-stateful.yaml

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: postgres-demo
spec:
 serviceName: "postgres"
 replicas: 2
 selector:
 matchLabels:
 app: postgres
 template:
 metadata:
 labels:
 app: postgres
 spec:
 containers:
 - name: postgres
 image: postgres:latest

 envFrom:
 - configMapRef:
 name: postgres-config-demo
 ports:
 - containerPort: 5432
 name: postgredb
 volumeMounts:
 - name: postgredb
 mountPath: /var/lib/postgresql/data
 subPath: postgres
 volumeClaimTemplates:
 - metadata:
 name: postgredb
 spec:
 accessModes:
 storageClassName: gp2
 resources:
 requests:
 storage: 3Gi

In this yaml file, we can see that we are consuming the configmap we created earlier. We are also at
the bottom of the file creating a volume claim automatically with the help of the storage class gp2.
Refer to https://kubernetes.io/docs/concepts/storage/storage-classes/#aws-ebs for more info.

The neat thing about statefulset is that it will create a volume for each of the pods. If any of the pods
get deleted, the volume will persist. Let's see what I mean:

Assuming the file above is created, if we describe any of the two pods, we will see in the event what
is happening:

Events:
 Type Reason Age From
Message
 ---- ------ ---- ----

 Normal Scheduled 1m default-scheduler
Successfully assigned default/postgres-demo-0 to ip-172-20-33-219.us-
west-2.compute.internal
 Normal SuccessfulAttachVolume 1m attachdetach-controller
AttachVolume.Attach succeeded for volume
"pvc-61f5163b-4aac-11e9-8d84-0692704f033a"
 Normal Pulling 1m kubelet, ip-172-20-33-219.us-
west-2.compute.internal pulling image "postgres:latest"
 Normal Pulled 1m kubelet, ip-172-20-33-219.us-
west-2.compute.internal Successfully pulled image "postgres:latest"
 Normal Created 1m kubelet, ip-172-20-33-219.us-
west-2.compute.internal Created container
 Normal Started 1m kubelet, ip-172-20-33-219.us-
west-2.compute.internal Started container

https://kubernetes.io/docs/concepts/storage/storage-classes/#aws-ebs

olatoyei01-mac

This line “AttachVolume.Attach succeeded for volume "pvc-61f5163b-4aac-11e9-8d84-0692704f033a"”
tells us that a PVC is attached and a volume is created in aws. Something like the image below:

Lets verify that
the configmap actually got injected by first checking the service that fronts out statefulset.

kubectl get service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
postgres NodePort 100.64.200.90 5432:31556/TCP 13s

Now we can connect with node port 31556 and the public IP address of the node our pod is running
on. Keep in mind, i am using node port just to show how to quickly connect. It is not recommended
to expose your database to public. If we run this command “psql -h <PUBLIC IP> -U
demopostgresadmin --password -p 31556 demopostgresdb”, it will prompt for a password. We can
enter the password we defined in configmap earlier. If all goes well we should see something like

psql (11.2, server 10.4 (Debian 10.4-2.pgdg90+1))
Type "help" for help.

demopostgresdb=#

To conclude, we used statefulset to deploy our postgres image along with PV/PVC, injecting
configs into the pods using configmap, then exposing the postgres pods using a service that we can
connected to on the NodePort.

Additional resources
For more on Kubernetes, explore these resources:

Kubernetes Guide, with 20+ articles and tutorials
BMC DevOps Blog
Bring Kubernetes to the Serverless Party
How eBay is Reinventing Their IT with Kubernetes & Replatforming Program

https://www.dev.blogs.bmc.com/what-is-kubernetes/
https://www.dev.blogs.bmc.com/categories/devops/
https://www.dev.blogs.bmc.com/bring-kubernetes-to-the-serverless-party/
https://www.dev.blogs.bmc.com/ebay-kubernetes-replatforming/

