
INTRODUCTION TO KUBERNETES INGRESS

In this blog post, we’ll cover Kubernetes Ingress, including what it is and some of the concepts you’ll
need to learn. This articles assumes you have a solid understanding of Kubernetes.

What is Kubernetes ingress?
To start simply, a Kubernetes ingress exposes HTTP and HTTPS routes from outside of a cluster to
services created inside the cluster. In general, you’ll find that:

Rules defined on the ingress resource control traffic routes.
You can set up ingress to do several things:

Provide services externally-reachable URLs
Load balance traffic
Offer name-based virtual hosting
Terminate SSL (secure sockets layer) or TLS (transport layer security)

Ingress controllers handle the ingress with the help of a load balancer. We can also achieve
this outcome with an edge router, which is a virtual or physical router that enforces the firewall
policy for the cluster.
Ingress does not expose any random port; only HTTP and HTTPS.

Understanding ingress resource
Ingress is typically defined with an ingress resource. Like most K8S resources, the ingress resource
needs apiVersion, kind, and metadata.

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://unofficial-kubernetes.readthedocs.io/en/latest/concepts/services-networking/ingress/

Annotation can be used to configure ingress controller with certain options, e.g., rewrite-target
which targets URI where the traffic must be redirected for nginx ingress.
The spec section is where you’ll configure the load balancer or the proxy server.

An example of a resource looks like this:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: demo-ingress
 annotations:
 nginx.ingress.kubernetes.io/rewrite-target: /
spec:
 rules:
 - http:
 paths:
 - path: /demopath
 backend:
 serviceName: demo
 servicePort: 80

Ingress rules
The ingress rules are a set of rules used to process incoming traffic to services in the cluster. Using
the example above, let’s go over the rules section of the spec.

Specify how the rule applies. We can use HTTP/S or host-based rule (foo.bar.com). In the1.
example above, we are using HTTP as opposed to host-based.
Define the path and the backend service/port to route to. In our example above, the service2.
name is demo with port 80. (Note: Both the host and the path must match the content of an
incoming request before the load balancer will direct traffic to the referenced service.)

If a rule is not defined, all traffic will be routed to a default backend that is specified in ingress
controller.

Types of ingress
The three types of ingress are:

Single service exposes a single service just like NodePort for example.
Simple fanout routes traffic from a single IP to multiple services based on the URI.
Name-based virtual hosting routes traffic to multiple hostnames on the same IP.

TLS (transport layer security)
Securing an ingress is simple. In the resource manifest, specify a secret with a private key and
certificate.

Load balancing
An ingress controller has some load balancing policy settings apply to all ingress. Two common
ones are the load balancing algorithm and the backend weight scheme.

Ingress controllers
For ingress resources to work, an ingress controller must be running. This type of controller is not
like other controllers in k8s (i.e., part of the cluster). Instead, the ingress controller is a separate entity
that must be deployed separately.

Examples of ingress controllers are:

GCE
nginx
istio
Kong

Refer to K8S documentation to a see full list. You can run any number of controllers in the cluster so
long as they are annotated properly with ingress.class.

