
WHAT IS KUBERNETES DAEMONSET? K8S DAEMONSETS
EXPLAINED

In this blog post, we will discuss Kubernetes DaemonSet, including what it’s used for, how to create
one, and how to work with it, using a simple example. To understand this topic, you’ll need a basic
understanding of K8S, Kubectl, and Pods. To best follow along with the demo, you’ll want to have a
k8s cluster with multiple nodes.

What is a DaemonSet?
DaemonSets are used to ensure that some or all of your K8S nodes run a copy of a pod, which
allows you to run a daemon on every node.

When you add a new node to the cluster, a pod gets added to match the nodes. Similarly, when you
remove a node from your cluster, the pod is put into the trash. Deleting a DaemonSet cleans up the
pods that it previously created.

Why use DaemonSets?
Now that we understand DaemonSets, here are some examples of why and how to use it:

To run a daemon for cluster storage on each node, such as:
glusterd
ceph

To run a daemon for logs collection on each node, such as:
fluentd

logstash
To run a daemon for node monitoring on ever note, such as:

Prometheus Node Exporter
collectd
Datadog agent

As your use case gets more complex, you can deploy multiple DaemonSets for one kind of daemon,
using a variety of flags or memory and CPU requests for various hardware types.

How are DaemonSets scheduled?
DaemonSets are scheduled either with DaemonSet controller or default scheduler. Let’s compare:

DaemonSet controller. When you specify .spec.nodeName during pod creation, these pods
will have the machine already selected. In this type of scheduler, the unschedulable node field
is not respected. The scheduler can also create pods without starting the scheduler—this helps
cluster bootstrap.

By default, this controller is disabled in K8S v1.12+.
Default scheduler. Using ScheduleDaemonSetPods allows for scheduling DaemonSets using
defaults, not DaemonSet controller. To do this, add NodeAffinity to the DaemonSet pods
(instead of .spec.nodeName).

By default, the scheduler will replace your DaemonSet pod node affinity if it already
exists.

Working with DaemonSets
Like every manifest in K8S, the following fields are required:

apiVersion
kind
metadata

There are certain things to keep in mind when using DaemonSets:

When you create a DaemonSet, the .spec.selector cannot be changed. Changing it will break
things.
You must specify a pod selector to match the .spec.template labels.
Typically, you should not create pods with labels that match this selector—either directly via
another DaemonSet, or indirectly, via another controller (like ReplicaSet). If you do, the
DaemonSet controller thinks it created those pods.

Note that you can deploy a DaemonSet to run only on some nodes, not all nodes. To do so, specify
.spec.template.spec.nodeSelector. It will deploy to any node that matches the selector.

Deleting a DaemonSet
Deleting a DaemonSet is simple. Run kubectl delete fluentd-es-demo. This will delete the
DaemonSet and its associated pods.

To delete DaemonSet without deleting the pods, add the flag –cascade=false with kubectl.

A DaemonSet example
To show additional fields in the manifest, we’ll deploy this example of fluentd-elasticsearch image
that will run on every node. This idea is that we want to have a daemon of this on every node
collecting logs for us and sending it to ES.

demo.yaml

apiVersion: apps/v1 #required fields
kind: DaemonSet #required fields
metadata: #required fields
name: fluentd-es-demo
labels:
k8s-app: fluentd-logging
spec:
selector:
matchLabels:
name: fluentd-es #this must match the label below
template: #required fields
metadata:
labels:
name: fluentd-es #this must match the selector above
spec:
tolerations:
- key: node-role.kubernetes.io/master
effect: NoSchedule
containers:
- name: fluentd-es-example
image: k8s.gcr.io/fluentd-elasticsearch:1.20
resources:
limits:
memory: 200Mi
requests:
cpu: 100m
memory: 200Mi
volumeMounts:
- name: varlog
mountPath: /var/log
- name: varlibdockercontainers
mountPath: /var/lib/docker/containers
readOnly: true
terminationGracePeriodSeconds: 30
volumes:
- name: varlog
hostPath:
path: /var/log
- name: varlibdockercontainers
hostPath:

path: /var/lib/docker/containers

Now, we’ll run kubectl create -f demo.yaml to deploy the example.

$ kubectl create -f demo.yaml
daemonset.apps "fluentd-es-demo" created

Make sure it's running:

$ kubectl get daemonset
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE
SELECTOR AGE
fluentd-es-demo 3 3 3 3 3
<none> 59s

Now, let’s see how many nodes we have. Run kubectl get nodes to see the identity of our nodes.

$ kubectl get node
NAME STATUS ROLES AGE VERSION
node2 Ready <none> 92d v1.10.3
node1 Ready <none> 92d v1.10.3
node3 Ready <none> 92d v1.10.3

Finally, let’s confirm that we have all pods running and to make sure they are running on every node.

$ kubectl get pod -o wide
NAME READY STATUS RESTARTS AGE IP
NODE
fluentd-es-demo-bfpf9 1/1 Running 0 1m
10.0.0.3 node3
fluentd-es-demo-h4w85 1/1 Running 0 1m
10.0.0.1 node1
fluentd-es-demo-xm2rl 1/1 Running 0 1m
10.0.0.2 node2

We can see that not only is our fluentd-es-demo pods running, but there is a copy of each on every
node.

Additional resources
For more on Kubernetes, explore these resources:

Kubernetes Guide, with 20+ articles and tutorials
BMC DevOps Blog
The State of Kubernetes in 2020
CKA Labs (10) - Kubernetes DaemonSets
An Introduction to Kubernetes DaemonSets
GitHub

https://www.dev.blogs.bmc.com/what-is-kubernetes/
https://www.dev.blogs.bmc.com/categories/devops/
https://www.dev.blogs.bmc.com/state-of-kubernetes/
https://vocon-it.com/2019/08/07/cka-labs-10-kubernetes-daemonsets/
https://www.bluematador.com/blog/an-introduction-to-kubernetes-daemonsets
https://github.com/minishift/minishift/issues/510

