
KUBERNETES BEST PRACTICES FOR ENHANCED CLUSTER
EFFICIENCY

With containerization quickly changing architectural patterns of application development, the
Kubernetes platform continues to be its flag-bearer. Based on Forrester’s 2020 Container Adoption
Survey, roughly 65% of surveyed organizations are already using, or are planning to use, container
orchestration tools as part of their IT transformation strategy. In all likelihood, the popularity of
Kubernetes will only grow.

Although Kubernetes extends a future-proof container solution to improve productivity, use cases
also indicate that relying solely on out-of-the-box Kubernetes services to containerize application
builds may not always be the best approach. To get the most out of K8s, implement best practices
and follow a custom-configured model to ensure the optimal platform your application build
requires.

This article will delve into 11 best practices to realize a Kubernetes cluster model that is scalable,
secured, and highly optimized. (This article is part of our Kubernetes Guide. Navigate to other articles
and tutorials using the right-hand menu.)

https://dev.blogs.bmc.com/blogs/what-is-a-container-containerization-explained/
https://go.forrester.com/blogs/container-adoption-is-on-the-rise-how-can-security-keep-up/
https://go.forrester.com/blogs/container-adoption-is-on-the-rise-how-can-security-keep-up/
https://dev.blogs.bmc.com/blogs/it-orchestration-vs-automation-whats-the-difference/
https://dev.blogs.bmc.com/blogs/it-orchestration-vs-automation-whats-the-difference/
https://dev.blogs.bmc.com/blogs/what-is-kubernetes

1. Download the latest version
With its regular version updates, Kubernetes releases new features, bug fixes, and platform
upgrades. As a rule of thumb, you must always use the latest Kubernetes version on your cluster.
This ensures that your version has:

All the updated features, so you don’t miss out on support from older, unsupported versions.
Updated security patches that defer potential attack vectors while fixing reported
vulnerabilities.

While updated features are good, updated security is crucial.

2. Use namespaces
Adopting Kubernetes in larger organizations with multiple teams accessing the same cluster
requires a custom approach to resource usage. Improper accessibility provisioning often leads to
conflicts among teams for resource usage.

https://dev.blogs.bmc.com/blogs/security-vulnerability-vs-threat-vs-risk-whats-difference/

To solve this, use namespaces to achieve team-level isolation for teams trying to access the same
cluster resources concurrently. Efficient use of Namespaces helps create multiple logical cluster
partitions, thereby allocating distinct virtual resources among teams.

3. Maintain small container images
Most developers make the mistake of using the base image out-of-the-box, which may have up to
80% of packages and libraries they don’t need.

Always use smaller container images as it helps you to create faster builds. As a best practice, you
should:

Go for Alpine Images, as they are 10x smaller than the base images
Add necessary libraries and packages as required for your application.

Smaller images are also less susceptible to attack vectors due to a reduced attack surface.

4. Set resource requests & limits
To avoid cases where a single team or application drains all the cluster resources, set requests and
limits for cluster resources, specifically CPU and Memory. Doing so limits disproportionate resource
usage by applications and services, thereby avoiding capacity downtime.

To set requests and limits on a container, you may use the following container spec as a reference:

containers:
- name: darwin
 image: CentOS
 resources:
 requests:
 memory: “256Mi”
 cpu: “300m”
 limits:
 memory: “1024Mi”
 cpu: “900m”

The above container spec essentially allocates resource requests 256 MiB of memory and 300
mCPU, while limiting a maximum of 900 mCPU and 1024 MiB to the darwin container.

5. Use readinessProbe & livenessProbe
Leverage Kubernetes Check Probes to proactively avoid pod failures:

With readinessProbe for production apps, Kubernetes checks if the application is ready to start
serving traffic before allowing traffic to a pod. This essentially indicates whether a pod is
available to accept traffic and respond to requests.
Through a livenessProbe, Kubernetes performs a health check to ensure the application is
responsive and running as intended. In the event the livenessProbe fails, the kubelet default
policy restarts the container to bring it back-up.

6. Deploy RBAC for security
Role-based Access Controls (RBAC) help administer access policies to define who can do what on
the Kubernetes cluster. To set RBAC permissions on Kubernetes resources, Kubernetes provides
these parameters:

Role for a namespaced resource
ClusterRole for a non-namespaced resource

Here is an example where ClusterRole is used to administer read access to services on all
namespaces:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: reader
rules:
- apiGroups:
 resources:
 verbs:

Additionally, Kubernetes also allows RoleBinding and ClusterRoleBinding by referencing roles
already administered on a user, group, or service account. More details on Kubernetes RBAC
policies can be found here.

7. Autoscale
It is strongly recommended that you leverage benefits from Kubernetes’ autoscaling mechanisms to
automatically scale cluster services with a surge in resource consumption.

With Horizontal Pod Autoscaler and Cluster Autoscaler, node and pod volumes get adjusted
dynamically in real-time, thereby maintaining load to the optimum level and avoiding capacity
downtimes.

8. Monitor control plane components
Don’t make this common mistake: forgetting to monitor the Kubernetes cluster’s brain—the control
plane. The control plane includes:

the Kubernetes API Service
kubelet
controller-manager
etcd
kube-proxy
kube-dns

Monitoring the control plane helps identify issues/threats within the cluster and increase its latency.
It is also recommended to use automated monitoring tools (Dynatrace, Datadog, Sysdig, etc.) rather
than manually managing the alerts.

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding
https://www.dynatrace.com/
https://www.datadoghq.com/

Keeping an eye on your Kubernetes’ control plane components essentially monitors workload and
resource consumption to help mitigate issues with your cluster health.

9. Adopt Git-based workflow
Use GitOps, a Git-based workflow, as the preferred model to use Git as the single source of truth for
all automation, including CI/CD pipelines. Adopting a GitOps framework helps improve productivity
by:

Bringing down deployment times
Enhancing error traceability
Automating CI/CD workflows

Leveraging GitOps on a Kubernetes cluster helps you achieve unified management of the cluster as
well as sped-up application development.

10. Watch for high disk usage
High-disk usage is a common issue that impacts cluster performance. As a regular practice, you
should monitor:

The root file system
All disk volumes associated with the cluster

Frequently, you would also encounter high-disk utilization alerts for unknown reasons; such cases
usually tend to get tricky to fix due to their obscure nature of the root cause. Keeping alert
monitoring in place helps take corrective actions either by scaling or freeing disk space at the right
time.

11. Regularly audit policy logs
Underrated as a best practice, all logs stored at /var/log/audit.log must be audited regularly to:

Identify threats
Monitor resource consumption
Capture key event heartbeats of the Kubernetes cluster

The default policies of the Kubernetes cluster are defined in the /etc/kubernetes/audit-
policy.yaml file and can be customized for specific requirements. Additionally, you could also use
Fluentd as an open-source tool to maintain a centralized logging layer for your containers.

Custom approach for K8s
If you are already using Kubernetes or are getting production-ready, a custom approach to
configuring your cluster goes a long way. These best practices have been repeatedly suggested by
professionals who have already gone through the pain of learning the hard way.

You may also often realize a few practices that may suit your cluster architecture, as every
application build would require a completely different approach to fine-tune efficiency. The key to
success would rely, no matter what, on how optimized your containerized framework is.

Additional resources
For related reading, explore these articles:

BMC DevOps Blog
Kubernetes Guide, a series of articles and tutorials
3 Kubernetes Patterns for Cloud Native Applications
State of Containers in 2020
Containerized Machine Learning: An Intro to ML in Containers

https://dev.blogs.bmc.com/blogs/categories/devops/
https://dev.blogs.bmc.com/blogs/what-is-kubernetes
https://dev.blogs.bmc.com/blogs/kubernetes-patterns/
https://dev.blogs.bmc.com/blogs/state-of-containers/
https://dev.blogs.bmc.com/blogs/machine-learning-containers/

