
INFRASTRUCTURE AS CODE (IAC): AN INTRODUCTION

Infrastructure as Code, or IaC, is a method of writing and deploying machine-readable definition files
that generate service components, thereby supporting the delivery of business systems and IT-
enabled processes. IaC helps IT operations teams manage and provision IT infrastructure
automatically through code without relying on manual processes. IaC is often described as
“programmable infrastructure”.

Infrastructure as Code can be applied to the entire IT landscape but it is especially critical for cloud
computing, Infrastructure as a Services (IaaS), and DevOps. DevOps requires agile work processes
and automated workflows which can only be achieved through the assurance of readily available IT
Infrastructure – which is needed to run and test the developed code. This can only happen within an
automated workflow.

IaC for DevOps
Within the context of software development, a fundamental constraint is the need for the
environment where recently developed software code is tested to exactly mirror the live
environment where such code will be deployed to. This is the only way of assuring that the new
code will not collide with existing code definitions – generating errors or conflicts that may
compromise the entire system.

In the past, software delivery would follow this sort of pattern:

https://dev.blogs.bmc.com/blogs/devops-basics-introduction/


A System Administrator would setup up a physical server and install the operating system will
all necessary service packs and tuning to mirror the status of the main operating live machine
that supports the production environment.
Then a Database Administrator would undergo the same process regarding the support
Database, and the machine would be handed off to a Test Team.
The developer would deliver the code/program by copying it to the test machine, and the Test
Team would run several operational and compliance tests.
Once the new code had gone through the entire process it would be deployed to the live
Operational environment. In many cases, the new code would not work correctly and
additional troubleshooting and rework would be necessary.

Manual recreation of a live environment leaves doors open to a multitude of most likely minor but
potentially quite important human errors e.g. OS version, patch level, time zone etc. A live
environment clone created using the exact same IaC as the live environment has the absolute
guarantee that that if it it works in the cloned environment it will work in live. Imagine a Software
Delivery process involving DEV, UAT and Production environments - there seems little value in
having a DEV and UAT environment that isn’t an exact mirror of the Production environment given
that those early environments are critical to measuring the quality and production readiness of a
software build version.

The introduction of virtualization enabled the process to be expedited with regards to the phase of
creating and bringing up to date a test server that would mirror the live environment, yet the process
was manual, meaning a human would have to create and update the machine accordingly and in a
timely fashion.

With the introduction of DevOps, the process became even more “agile” due to the addition of
automation in the Server Virtualization and Testing phases, replacing human intervention.

To summarize, in the past several man-hours and human resources were required to complete the
software deployment cycle (Developers, Systems Administrators, Database Administrators,
Operation Testers), while now it is possible to have the developer complete all tasks:

The developer writes down the application code plus configuration management related
instructions that will trigger actions from the virtualization environment, and other
environments such as the database, appliances, testing tools, delivery tools, and more.
Upon new code delivery, the configuration management set of instructions will automatically
create a new virtual test environment with an application server plus database instance that
exactly mirror the live operational environment structure, both in terms of service packs and
versioning as well as live data that is transferred to such virtual test environment. This is the
Infrastructure as Code part of the process.
Then a set of tools will perform necessary compliance tests and error identification &
resolution. The new code is then ready for deployment to the live IT environment.

Current State of Infrastructure as Code
The general IaC concept, as well as available tools, has reached a very mature state with a lot of
organizations having defined their roadmaps for adopting it.

There are now a number of tools available to adopt Infrastructure as Code with and the right tool will
differ for every Infrastructure or DevOps team. The available tools differ widely in usage and



functionality so below is a high level overview of some of the most popular tools available for
building and managing your IaC. Software forums and GitHub issue pages are packed with
information, documentation and people willing to assist and therefore adopting IaC is much easier
than it historically was.

Puppet/Chef
Chef was developed under the perspective of enabling fast collaboration amongst team members
and is, therefore, a DevOps context focused support asset while Puppet has evolved targeting sheer
processes automation making it useful for the fast creation of new infrastructure as per client
requirements.

Ansible
Although not specifically an IaC tool, Ansible, an Open Source and popular configuration
management tool, does have the required modules to build Infrastructure in a number of cloud and
on premises providers. Whilst not cloud agnostic, Ansible does support multiple cloud providers.

Ansible is an agent less tool that operates over SSH (linux) or WinRM (windows) with the
Infrastructure configuration code being written in YAML. Ansible is not stateful and is therefore it’s
main purpose is for creation of the infrastructure and not management of.

Great for Configuration Management, not so great for building and managing cloud and on-premise
infrastructure.

https://www.ansible.com

Terraform
Terraform is an Open Source, stateful, multi vendor Infrastructure as Code tool that codifies API’s
into Terraform configuration files to allow teams to build and manage wide scale infrastructure
estates with software delivery principles. Whilst not cloud agnostic, Terraform is multi cloud
compatible whilst additionally supporting vendors who provide SaaS services or Container
Orchestration tools e.g. StatusCake and Kubernetes.

Terraform is widely supported by most common cloud and DevOps tooling and the Terraform
Module Repository has a great deal of pre-written terraform modules which you can simply
populate with your input variables to build and manage your infrastructure. When building and
maintaining infrastructure Terraform requires approval before applying destructive changes, adding
a safety net incase of “bad” IaC causing undesired outcomes.

When moving from a previously non IaC environment, it is possible to import your existing resources
into Terraform for continue management however this is a very manual and time consuming task -
but possible nonetheless.

https://www.terraform.io

CloudFormation
Amazon Web Services specific Infrastructure as Code tool, written in JSON and run via the AWS
Console or AWS CLI allows you to build and manage your infrastructure as code in AWS. Obviously,

https://www.ansible.com
https://www.terraform.io


not multi cloud however does offer the best AWS support whilst still being a stateful IaC tool. AWS
provides a lot of templates that can be used to get started with CloudFormation so it’s pretty easy to
get up and running.

https://aws.amazon.com/cloudformation/

ARM Templates
ARM templates are Microsoft Azure’s implementation of IaC and allow you to provision Microsoft
Azure resources using a Declarative template. Not stateful and not Multi Cloud - simply good for
building infrastructure and not managing it moving forwards.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview

Benefits of Infrastructure as Code
Some of the major benefits of Infrastructure as Code are:

Reducing Shadow IT – Much of the shadow IT within organizations is due to the inability of IT
departments to provide satisfactory and timely answers to operational areas concerning IT
infrastructure and systems enhancements. Shadow IT poses significant security risks as well as
potential unforeseen costs for the organization. Enabling a fast response to new IT
requirements through IaC assisted deployment not only assures higher security and
compliance with corporate IT standards, but is also helpful with budgeting and cost allocation.
Improving Customer Satisfaction – Being able to deliver a quality service component within a
short period of time contributes to customer satisfaction and improved perception of IT within
an organization (as measured by Net Promoter Score or other method).
OPEX reduction – If a company can configure and deploy a fully tested and compliant new IT
Infrastructure asset within a matter of minutes either with minimal or even no human
intervention, this represents a colossal saving in work time and security-related financial risk
potential.
CAPEX reduction – Being able to have a developer accomplish on her own the tasks of several
team members, particularly in the context of DevOps, will significantly improve the project
CAPEX.
Standardization – When the creation of new infrastructure is coded there is the assurance of a
consistent set of instructions and standardization. Manual configurations are prone to errors
and minor changes which can create ever so slight differences that over time represent major
nonconformities with the standard (and technical debt).
Safer Change Management – Standardization assurance enables safer changes to take place,
with lower deviation rates.
Application of Software Delivery Principles - Ability to promote and use Software Delivery
principles, such as version control, peer programming, and code reviews to Infrastructure
results in fewer un-planned outages and better change history tracking.
Scalable and Immutable Infrastructure - Provides the ability for additional resources to be
provisioned during burst periods allowing horizontal scaling and the ability to replace
resources in the event of failure.

https://aws.amazon.com/cloudformation/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://dev.blogs.bmc.com/blogs/capex-vs-opex/


Risks Involved with Infrastructure as Code
There is some risk that needs to be accounted for:

Missing proper planning – Once a company decides to move towards having an IaC capable
IT Landscape in place, there is the mandatory need to define Infrastructure that will allow the
implementation, configuration, and operation of IaC tools.A simple example is that you can only
create and operate virtual machines if you have in place a physical server infrastructure that
can run a tool like VMware and is powerful and scalable enough (CPU, RAM, HDD) to support
several heavy demanding simultaneous virtual machines running in parallel without any
performance impact, plus redundancy that allows all to continue working within normal
operational standards if problems occur.
IaC requires new skills – Most existing IaC tools require expertise to be handled, and reaching
such levels requires significant time in learning and training. Some companies are likely to start
by resorting to outsourcing services until the tools become more user-friendly, staff is trained
on the new tools, or new experts are brought on to the team.
Error replication – Since the initial code is developed by humans, there is always the chance
that it contains minor errors that will only produce impact after some time. The problem here is
that meanwhile, several machines may have been automatically created where such errors
exist. So there is the need for applying a solid auditing process to the creation of IaC generating
code.
Configuration Drift – Once a machine is created via an IaC workflow, it should not suffer
intervention outside of an automated, aligned, and compliant maintenance workflow. Manual
or external updates (even if just security patching) may result in configuration drifting which in
time has the potential of producing massive non-compliance or even service failure.
Accidental Destruction - Some IaC tools that maintain state have the ability to automatically
destroy resources should the code reflect that action. IaC in an automation pipeline can
sometimes have undesired outcomes.


