HOW TO WRITE SPARK UDFS (USER DEFINED FUNCTIONS) IN
PYTHON

In this article, I'll explain how to write user defined functions (UDF) in Python for Apache Spark. The
code for this example is here.

Why do you need UDFs?

Spark stores data in dataframes or RDDs—resilient distributed datasets. Think of these like
databases. As with a traditional SQL database, e.g. mySQL, you cannot create your own custom
function and run that against the database directly. You have to register the function first. That is,
save it to the database as if it were one of the built-in database functions, like sum(), average,
count(),etc.

That's the case with Spark dataframes. With Spark RDDs you can run functions directly against the
rows of an RDD.

Three approaches to UDFs

There are three ways to create UDFs:

e df = df.withColumn
« df = sglContext.sql(*sgl statement from <df>")
e rdd. map(customFunction())

We show the three approaches below, starting with the first.

https://github.com/werowe/SparkPythonUDF/blob/master/SparkUDF.ipynb

Approach 1: withColumn()

Below, we create a simple dataframe and RDD. We write a function to convert the only text field in
the data structure to an integer. That is something you might do if, for example, you are working with
machine learning where all the data must be converted to numbers before you plug that into an
algorithm.

Notice the imports below. Refer to those in each example, so you know what object to import for
each of the three approaches.

Below is the complete code for Approach 1. First, we look at key sections. Create a dataframe using
the usual approach:

df = spark.createDataFrame(data, schema=schema)

Now we do two things. First, we create a function colslnt and register it. That registered function
calls another function tolnt(), which we don't need to register. The first argument in
udf.register("colsInt”, colsint) is the name we'll use to refer to the function. The second is the
function we want to register.

colsInt = udf(lambda z: toInt(z), IntegerType())
spark.udf.register("colsInt", colsInt)

def toInt(s):

if isinstance(s, str) == True:
st =
return(int(''.join(st)))
else:

return Null

Then we call the function colinsint, like this. The first argument is the name of the new column we
want to create. The second is the column in the dataframe to plug into the function.

df2 = df.withColumn('semployee',colsInt('employee'))

Remember that df is a column object, not a single employee. That means we have to loop over all
rows that column—so we use this lambda (in-line) loop.

colsInt = udf(lambda z: toInt(z), IntegerType())
Here is Approach 1 all together:

import pyspark

from pyspark import SQLContext

from pyspark.sql.types import StructType, StructField, IntegerType,
FloatType, StringType

from pyspark.sql.functions import udf

from pyspark.sql import Row

conf = pyspark.SparkConf ()

sc = pyspark.SparkContext.getOrCreate(conf=conf)
spark = SQLContext(sc)

schema = StructType()
data =]
df = spark.createDataFrame(data, schema=schema)

colsInt = udf(lambda z: toInt(z), IntegerType())
spark.udf.register("colsInt", colsInt)

def toInt(s):

if isinstance(s, str) == True:
st =
return(int(''.join(st)))
else:

return Null

df2 = df.withColumn('semployee',colsInt('employee'))

Now we show the results. Notice that the new column semployee has been added. withColumn()
creates a new dataframe so we created df2.

df2.show()

Approach 2: Using SQL

The first step here is to register the dataframe as a table, so we can run SQL statements against it. df
is the dataframe and dftab is the temporary table we create.

spark.registerDataFrameAsTable(df, "dftab")

Now we create a new dataframe df3 from the existing on df and apply the colsInt function to the
employee column.

df3 = spark.sql("select sales, employee, ID, colsInt(employee) as iemployee
from dftab")

Here are the results:

df3.show()

Approach 3: RDD Map

A dataframe does not have a map() function. If we want to use that function, we must convert the
dataframe to an RDD using dff.rdd.

Apply the function like this
rdd = df.rdd.map(toIntEmployee)

This passes a row object to the function tolIntEmployee. So, we have to return a row object. The RDD
is immutable, so we must create a new row.

Below, we refer to the employee element in the row by name and then convert each letter in that
field to an integer and concatenate those.

def toIntEmployee(rdd):

s = rdd

if isinstance(s, str) == True:
st =
e = int(''.join(st))

else:
e =5

return Row(rdd, rdd, rdd,e)
Now we print the results:

for x in rdd.collect():
print(x)

<row (10.199999809265137, 'Fred', 123, 70114101100)>

