
INTRODUCTION TO APACHE PIG

Apache Pig 101
Apache Pig, developed at Yahoo, was written to make it easier to work with Hadoop. Hadoop was
developed by Google. Pig lets programmers work with Hadoop datasets using a syntax that is
similar to SQL. Without Pig, programmers most commonly would use Java, the language Hadoop is
written in. But Java code is inherently wordy. It would be nicer to have an easier and much shorter
way to do Hadoop MapReduce operations. That is what Pig does.

But Pig is not exactly SQL. SQL programmers, in fact, will find some of its data structures a little
strange.

Data in Pig is represented in data structures called tuples, with all the other Pig data structures
being some variation on that. In its most basic form, a tuple is a comma delimited set of values:

(1,2,3,4,5)
(1,6,7,8,9)

And when you join two tuples, in this case on the first element, it represents the data like this:

(1,2,3,4,5,1,6,7,8,9)

Or this:

(1, {(1,2,3,4,5), (1,2,3,4,5)})

In the first case Pig has joined all the elements of two tuples into one. In the second it has put the
join criteria in the first element and created a bag in the second. A bag is a collection of tuples. And
individual elements are called atoms. Pig also supports maps in the format (key#value).

These odd structures leave the programmer scratching their head wondering how to unwind all of
that so they can query individual atoms. We explain some of those operations below.

Using Pig and how it works
What Pig does is run MapReduce operations across datasets. MapReduce is the fundamental
concept behind Hadoop and big data in general. But it means something quite different in Hadoop
than, for example, Apache Spark or the Scala programming language. In Hadoop, the map operation
means to split datasets into pieces and work on those pieces in parallel. Reduce means put them all
back together to deliver the desired dataset. In Spark and Scala, map means to run some operation
on every element on a list. Reduce means to calculate a final single value from those operations in
Spark.

You start Pig in local model using:

pig -x local

Instead of just Pig:

pig

Which causes it to run in cluster (aka mapReduce) mode. Local model simulates a distributed
architecture. In cluster mode, mapReduce uses Apache Yarn to run jobs on the cluster (i.e., a
network of machines) and stores the resulting data in HDFS (Hadoop Distributed File System).

Common mistakes
Pig you could say has some quirks that makes it difficult to debug errors, plus the people who
maintain Pig keep changing the language, slightly. It does not usually give simple error messages,
but shows a lengthy hard-to-read Java stack trace in most cases. (It will save those as a tmp* file in
the current directory.) So, before we start looking at some code examples, let’s look at some
common mistakes that might cause you problems and frustration right up front:

You need to check what port HDFS is running on in order to open files there. Look in
$HADOOP_HOME/etc/hadoop/core-site.xml for fs.default.namehdfs://localhost:9000
to get the port number.
Be careful copying and pasting left and quote marks from Google Docs or other word
processor into the Pig shell. Pig will throw an error unless you use the proper single quote ‘
(ASCII 27).
Either run Pig as root or spend time sorting through permissions issues.
Don’t use (control)(-c-) when you type an incomplete command as it prompts for more input.
That will exit the shell. Just type “,” or “;” until it quits the current command. Sometimes that can
take quite a few tries.
Type commands in a text editor and paste them in Pig as Pig does not let you edit previous
commands easily. For example you cannot use the up cursor and then edit the previous line if

it wraps around. You can see the history of commands by typing history.
If you have loaded Hadoop and Pig on your laptop, in order to learn it, run pig in local mode by
typing pig -x local if you get any java.net.ConnectException errors. That means Yarn or some
service is probably not running or configured correctly.
Even though we called Pig easy, it can be frustrating. For example, in writing this document we
found that store is a reserved keyword and cannot be used as a column name. And in writing
the sales report we wrote below it took some time to figure that out. Pig did not give any
friendly error message like “store is a reserved keyword.”

Load a file
Supposed we have a data file sales.csv like this, with sales by employee by shop. (As we just said,
we cannot use store for a column name as it is a reserved word. So we use shop.)

Shop,Employee,Sales

Dallas,Sam,30000
Dallas,Fred,40000
Dallas,Jane,20000
Houston,Jim,75000
Houston,Bob,65000
New York,Earl,40000

We can use Pig to calculate sales by store. First delete the first line that contains the header.
Otherwise it will become a row in our data set. Then copy the file to the Hadoop Distributed File
system like this:

hdfs dfs -put sales.csv /user/hadoop/

Now we load it to dataset a. In Pig, datasets are called relations. Here we tell it that the input file is
comma-delimited and we assign a schema to the data set using AS. We also give the field types:
chararray and int.

a = LOAD 'hdfs://localhost:9000/user/hadoop/sales.csv' USING PigStorage(',')
AS (shop:chararray,employee:chararray,sales:int);

Then we have this tuple which we can see by typing:

dump a

(Dallas,Sam,30000)
(Dallas,Fred,40000)
(Dallas,Jane,20000)
(Houston,Jim,75000)
(Houston,Bob,65000)
(New York,Earl,40000)

Note that we could have left off the schema in the relation. In that case you would refer to fields by
their relative position $0, $1, $2, … Note also that Pig is said to be lazy. That means it does not actually
run the mapReduce function until it is needed, such as printing out the data with dump.

We ask Pig to show us the schema of the data set using describe:

describe a

a: {shop: chararray,employee: chararray,sales: int}

Now we group the data by shop.

b = GROUP a BY shop;

Then we run a group operation, like count, sum, or average:

c = FOREACH b GENERATE group as shop, SUM (a.sales);

This gives us sales total by each shop:

(Dallas,90000)
(Houston,140000)
(New York,40000)

Notice that we referred to the sales column as a.sales even after we created the b relation.

ForEach
Pig lets you define user defined functions (UDF) to run over elements in a tuple in the FOREACH
construct. You can code those in Pig, Python, Ruby, or other. And you can use so-called Piggy Bank
functions that other persons have written and contributed here or use DataFu. Pig does not have a
lot of built-in functions, which is why people are adding their own.

But it does simple arithmetic. For example, here we multiply each sales figure by 2 creating the new
dataset b. Notice that we also dropped one column and only took two fields from the original
dataset a to create the dataset b.

b = FOREACH a GENERATE shop,sales*2

Flatten
Suppose we load another dataset:

a = LOAD 'hdfs://localhost:9000/user/hadoop/election/health.csv' USING
PigStorage(',') As (procedure, provider, name, address, city, state, zipcode,
stateName, discharges, aveCharges, avePayments, aveMedicarePayments);

That took that comma-delimited file and made this simple tuple structure.

describe a
a: {procedure: bytearray,provider: bytearray,name: bytearray,address:
bytearray,city: bytearray,state: bytearray,zipcode: bytearray,stateName:

https://cwiki.apache.org/confluence/display/PIG/PiggyBank
http://datafu.apache.org/docs/datafu/getting-started.html

bytearray,discharges:
bytearray,aveCharges: bytearray,avePayments: bytearray,aveMedicarePayments:
bytearray}

Notice also that it made each field of type bytearray, which is the default if you do not define that
explicitly.

Now we run a function. We run the STRSPLIT function which generates two values. Here we tell it to
split the field aveCharges field by the “$” sign (hex 24). That field is a string for currency $99999. We
cannot do math with that. So we split off the $ sign. STRSPLIT returns a tuple with a field on the left
and one on the right. In this case the field on the left is empty since the $ sign is the first character.
And the field on the right is the numeric part of the string.

b = FOREACH a GENERATE (procedure), STRSPLIT(aveCharges, '\\u0024');

Now we have a tuple of a tuples, which is called a bag, plus the field procedure.

dump b
((948 - SIGNS & SYMPTOMS W/O MCC,$34774.21),(,34774.21))

So we flatten the second tuple:

c = FOREACH b GENERATE procedure, FLATTEN($1);

Generating this tuple of elements, to make it easier to work with.

(948 - SIGNS & SYMPTOMS W/O MCC,,15042.00)

Filter
Going back to our original dataset:

(Dallas,Sam,30000)
(Dallas,Fred,40000)
(Dallas,Jane,20000)
(Houston,Jim,75000)
(Houston,Bob,65000)
New York,Earl,40000)

We select only employees who have sold more that $40,000.

x = filter a by sales > 40000

Yields:

(Houston,Jim,75000)
(Houston,Bob,65000)

Join and other set operations
There is no intersection operation in Pig, but there is join. Also there is union, cogroup, cross, union,
and a few others. Here, for example, is how join works. Suppose we have a list of students and what

class they are taking and then a list of classes and what each costs.

students = LOAD '/root/Downloads/people.txt' USING PigStorage(',') AS
(name,class);

(John,German)
(Jane,German)
(Bob,French)

class = LOAD '/root/Downloads/class.txt' USING PigStorage(',') AS
(class,fee);

(German,$100)
(French,$200)

Then join them by some element that is common to both tuples.

tuition = join students by class, class by class;

(Bob,French,French,$200)
(Jane,German,German,$100)
(John,German,German,$100)

That shows the class and the cost all in one structure.

Data types
Pig has a small set of data types. For example, it does not have a date data type. Instead we have
float, boolean, double, bag, map, string, int, and a few more. Often it is necessary to cast a data type,
like this: (int) x, or define its type, like this: x:int.

Save relations
If you shut down the Pig shell (You use quit or to do that.) you loose your datasets. But it saves the
history so that you can recreate your work. To save your results permanently use:

store x into 'someName

The log shown on the screen will say something lie:

Successfully stored 2 records in: "file:///root/Downloads/someName"

Which you can view like this:

cat output

Houston Jim 75000
Houston Bob 65000

Which when we load back into Pig is a tuple again:

(Houston,Jim,75000)
(Houston,Bob,65000)

So Pig is a great tool for doing ETL (extract, transfer, load) operations on Hadoop data. Pig programs
are much shorter than Java code. And its basic principles are not complicated to learn. Simplicity, in
fact, is what Yahoo was looking for when they created the language for their own in-house use.

