
HOW TO QUERY AMAZON DYNAMODB

In this article, we explain the basics of DynamoDB queries. The query syntax is quite different from
other databases, so it takes some time to get used to it.

Hash key in DynamoDB
The primary reason for that complexity is that you cannot query DynamoDB without the hash key.
So, it's not allowed to query the entire database. That means you cannot do what you would call a
full table scan in other databases.

However, the primary (partition) key can include a second attribute, which is called a sort key. The
key query condition must be = (equals). But operators for the sort key can be:

〈
〉
_
〈=
〉=
begins_with
between

Each query has two distinct parts:

The key condition query (i.e., the partition key hash) and optionally the sort key1.

https://dev.blogs.bmc.com/blogs/amazon-dynamodb/

The filter expression (whatever query other attribute you want)2.

Load sample data
We give some examples below, but first we need some data:

Install DynamoDB and run it locally, as we explained in How To Add Data in DynamoDB.1.
Install node so we can run some JavaScript code.2.
Install the Amazon SDK using npm, which is part of node:3.

npm install aws-sdk

Run these programs from the Amazon JavaScript examples:

Create the Movies table by running MoviesCreateTable.js.1.
Download the sample data from here and unzip it.2.
Load some data by running MoviesLoadData.3.

Inspect the data
Take a look at the top of the data file. It is a movie database that includes nested JSON fields and
arrays. So, it is designed to be used as a teaching exercise.

{
 "year": 2013,
 "title": "Rush",
 "info": {
 "directors": ,
 "release_date": "2013-09-02T00:00:00Z",
 "rating": 8.3,
 "genres": ,
 "image_url":
"http://ia.media-imdb.com/images/M/MV5BMTQyMDE0MTY0OV5BMl5BanBnXkFtZTcwMjI2OT
I0OQ@@._V1_SX400_.jpg",
 "plot": "A re-creation of the merciless 1970s rivalry between
Formula One rivals James Hunt and Niki Lauda.",
 "rank": 2,
 "running_time_secs": 7380,
 "actors":
 }
 }

Describe table
You can verify that the data was loaded using:

aws dynamodb describe-table --table-name Movies --endpoint-url
http://localhost:8000

Here is the first record.

https://dev.blogs.bmc.com/blogs/dynamodb-adding-data/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.NodeJs.01.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/samples/moviedata.zip
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.NodeJs.02.html

{
 "Table": {
 "TableArn": "arn:aws:dynamodb:ddblocal:000000000000:table/Movies",
 "AttributeDefinitions": ,
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "WriteCapacityUnits": 10,
 "LastIncreaseDateTime": 0.0,
 "ReadCapacityUnits": 10,
 "LastDecreaseDateTime": 0.0
 },
 "TableSizeBytes": 2095292,
 "TableName": "Movies",
 "TableStatus": "ACTIVE",
 "KeySchema": ,
 "ItemCount": 4608,
 "CreationDateTime": 1595056037.797
 }
}

Query structure
We will use the Amazon CLI command line interface to execute queries. If you are using any of the
programming language SDKs, the principles are the same. The only part that varies is the syntax.

Queries are composed of two parts:

Key condition expression1.
Filter expression2.

Key condition expression
The key condition expression can contain the partition key and, optionally, the sort key. This primary
key is what DynamoDB calls the partition key. You can also have a second key, which is called the
sort key. In the movies database, the partition key name is year and the sort key is the title. The
partition key query expression only allows equals to (=). The sort key allows

〈
〉
_
〈=
〉=
begins_with
between

The Amazon sample data includes a reserved word, year. So, we have to deal with that complexity
up front.

The query is below. We use backslashes (\) after each line because that's the continuation character

in the bash shell. And we put a single quote (') around JSON for the same reason, so that it can span
lines.

Here is the query:

aws dynamodb query \
 --endpoint-url http://localhost:8000 \
 --table-name Movies \
 --key-condition-expression "#yr = :yyyy" \
 --expression-attribute-names '{"#yr": "year"}' \
 --expression-attribute-values '{ ":yyyy":{"N":"2010"}}'

Let's break down each part of the query:

--key-condition-expression
#yr = :yyyy

The format of this expression is:
partition key name = placeholder
And you could add a sort key, which for this database is title.
But we don't want it here as we are looking for a title and not
searching by one.
The pound (#) sign means that we will redefine that partition
key field name in the parameter expression-attribute-names
because it is a reserved word. Usually you just put the field
name. But you cannot use year as it is a reserved word.
The colon (:) is a placeholder as well. It means we will redefine
that below in the key-condition-expression

--expression-attribute-names '{"#yr":
"year"}'

This is where we provide an alias for the field year as year is a
reserved word, meaning you can't use it as a field name.

--expression-attribute-values '{
":yyyy":{"N":"2010"}}'

Think of this as expansion or definition of the placeholder
used in the key or filter expressions (We will get to filter
expressions below). In other words, in the key condition we
wrote: :yyyy . That's just a temporary placeholder. We define
what value that holds here
'{ ":yyyy":{"N":"2010"}}'
The N means it is a number. S is string. B is binary.
2010 is the targeted value.

Filter expression
Remember that the key condition serves to select a set or records based upon their partition. It’s a
two-step process of pulling a subset of the database and then querying that subset in the filter
expression.

In the example below, we want to show all films in the year 2010 that have a rating higher than 8.5.
The (1) key condition gets the year and (2) filter expression lets you query by rating all movies from
the year 2010. It's designed this way for speed, by reducing the amount of data to query.

Here is the query:

aws dynamodb query \

 --endpoint-url http://localhost:8000 \
 --table-name Movies \
 --key-condition-expression "#yr = :yyyy" \
 --expression-attribute-names '{"#yr": "year"}' \
 --expression-attribute-values '{ ":yyyy":{"N":"2010"}}' \
 --filter-expression 'info.rating > :rating' \
--expression-attribute-values '{
 ":yyyy":{"N":"2010"},
 ":rating": { "N": "8.5" }
}'

The filter expression has the same syntax as the key condition, but there are a couple of items to
note.

 --filter-expression 'info.rating >
:rating' \

The filter expression, like the key condition, is just an attribute
on the left, operator in the middle, and placeholder on the
right. In other words, it's not JSON, whereas we use JSON
elsewhere.
rating is nested underneath info. So, we write info.rating.

--expression-attribute-values '{
":yyyy":{"N":"2010"},
":rating": { "N": "8.5" }
}'

In the key condition query above we used the exact same
parameter. Here we use JSON syntax:
--expression-attribute-values '{ ":yyyy":{"N":"2010"}}'
The only different here is we now have two placeholders
(:yyyy and :rating) so need two lines in that JSON:
--expression-attribute-values '{
":yyyy":{"N":"2010"},
":rating": { "N": "8.5" }
}'
This also illustrates the point that the filter expression must
always include the same query key condition. So, you repeat
it.

Additional resources
For more on this topic, explore the BMC Big Data & Machine Learning Blog or check out these
resources:

AWS Guide, with 15+ articles and tutorials on AWS
Availability Regions and Zones for AWS, Azure & GCP
Databases on AWS: How Cloud Databases Fit in a Multi-Cloud World
An Introduction to Database Reliability

https://dev.blogs.bmc.com/blogs/categories/machine-learning-big-data/
https://dev.blogs.bmc.com/blogs/aws-serverless-applications/
https://dev.blogs.bmc.com/blogs/cloud-availability-regions-zones/
https://dev.blogs.bmc.com/blogs/aws-cloud-databases/
https://dev.blogs.bmc.com/blogs/database-reliability/

