
DOCKER PRODUCTION DEPLOYMENT SECURITY
CONSIDERATIONS

Part of our series on Docker. Check out How to Introduce Docker Containers in Enterprise, Docker 101,
and Top 4 Docker Management Tips

Docker has been garnering a lot of attention in the enterprise world, and rightfully so. Companies are
looking at it and adopting (at least in development environments) at a rate not often seen in in the
enterprise world.

Docker has developers, cloud providers, and operating system (OS) vendors excited for various
reasons. For developers, Docker makes it easy to package their software once to be deployed and
run anywhere. Cloud providers are interested as it gives them a way to increase their tenants and
application density per server, potentially reducing costs. OS vendors need to be excited as use of
Docker potentially reduces the number of operating system licenses that companies need in their
environments.

Docker images (containers) are packages of all dependencies and their binaries. Developers like this
as containers will start and run on any machine the way they were intended to. This helps
developers focus on the app, instead of environment issues like dependencies and their versions.
Starting and stopping a container is fast and trivial. All of this means greater agility in setting up apps
(even their different versions) on any Docker host. Because of this agility, Docker has been
integrated heavily into continuous integration (CI) development workflows. However, using Docker
for continuous deployment or for deploying applications into production can actually cause delays

https://dev.blogs.bmc.com/blogs/3-steps-to-introduce-docker-containers-in-enterprise/
https://dev.blogs.bmc.com/blogs/docker-101-introduction/
https://dev.blogs.bmc.com/blogs/got-docker-4-docker-management-tips/


because of the many security considerations that exist for production.

The security considerations can be split into two major components:

Host Machine/OS:1.

Even though Docker containers are isolated from one another using cgroups and namespaces, they
still interact with the host OS kernel through the Docker daemon. Not properly secured, this creates
the potential for a hacker to use one container to gain access to all of the other containers on the
same Docker host.

Docker has a great write-up on security that describes how Docker interacts with the host OS kernel
and the related security best practices. This covers how to ensure users are set up in containers,
why it’s a bad idea to expose the Docker daemon REST API over http, and how to use kernel security
features like Security-Enhanced Linux (SELinux), etc.

Because the Docker host is an operating system, it must be updated regularly with patches and
configurations to ensure that it contains no security vulnerabilities. BMC’s BladeLogic Server
Automation can help set up Compliance and patching to ensure that the host OS is compliant.

The Center for Internet Security (CIS) has also published the CIS Docker benchmark that can be used
to run compliance and to correct issues with the host OS. You can create a component template in
BMC BladeLogic Server Automation to check and correct the host OS and Docker daemon
configurations.

Docker Images:2.

One of the key values of Docker is a layered approach that makes it very easy to bundle the
application along with required dependencies (packages) into a Docker image, which can then be
run on a Docker host. Once a developer creates a Docker image, it can then be published to a
Docker registry for download and reuse. These registries can be private or public, much like the
Docker Hub registry which contains thousands of images which have been downloaded millions of
times.

Developers and IT operations need to ensure that packages in these images do not have any
security vulnerabilities, and if found, are quickly updated or patched. In a virtualized environment,
live virtual machines can be updated through patching, configuration changes or application
updates. In contrast, when a Docker image needs to be updated, the base image and/or the
Dockerfile must be corrected, and then the image must be rebuilt and redeployed.

Conclusion:

Docker is a very exciting virtualization technology that has the potential to change the way that data
centers deploy software and continuously update applications. However, before Docker can move
into production environments, companies need to develop appropriate policies and procedures to
identify and remediate security vulnerabilities. Unlike traditional virtual machine environments,
where each VM contains an isolated operating system, Docker containers utilize the same host
operating system and are thus not isolated from one another.

In addition, for many companies, changing their update process from simply patching a virtual
machine to patching a Docker image, redeploying the image, and then updating the registry can be
challenging. How do they ensure that Docker containers are scanned for vulnerabilities? How do
they automate the updates across their environment? How do they ensure that only patched and

https://docs.docker.com/engine/security/security/


approved Docker images are deployed in the future? And finally, how do they ensure that changes
are properly updated in service desk records and the CMDB?

BMC solutions can help by scanning Docker images and containers, automating remediation of
vulnerabilities and providing self-service access to approved applications and containers. Learn
more.

https://dev.blogs.bmc.com/it-solutions/truesight-server-automation.html

