
DOCKER MONITORING: HOW TO MONITOR CONTAINERS AND
MICROSERVICES

What is Docker Monitoring?
Docker Monitoring is the activity of monitoring the performance of microservice containers in Docker
environments. Monitoring is the first step towards optimizing and improving performance.

TrueSight from BMC provides real-time visualizations and alerts on Docker microservices enabling
you to resolve performance issues faster.

Setting the stage for Docker Monitoring
Not long ago, most of the software application systems ran on bare-metal infrastructure hosted in
data centers. The hardware - consisting mainly of compute, storage and networking components -
was largely fixed in those environments, and, so was the monitoring infrastructure. It required few
updates later once a comprehensive solution was rolled out because changes in production, both
hardware and application related, that have impact on monitoring configuration were infrequent.

The virtualization of compute resources didn’t change that scenario much. Though it provided lots of
flexibility in provisioning non-production environments, the changes that impact monitoring tend to
be few, except in situations where an application component running in a cluster is auto-scaled.

https://dev.blogs.bmc.com/blogs/docker-101-introduction
https://dev.blogs.bmc.com/blogs/docker-101-introduction
https://dev.blogs.bmc.com/it-solutions/truesight.html

Such dynamic configurations made sense only when implementing elasticity resulted in cost
savings, and, for that, environments have to be on public cloud platforms like AWS where charges
are usage driven.

As the Virtual Machine (VM) retained the concept of a machine that runs an operating system, the
tools and methods used for bare-metal infrastructure could still be useful for VM based
environments with occasional tweaks. However, the use of containers to build application
environments has a disruptive impact on traditional monitoring methods because containers don’t fit
well with the assumptions made by traditional tools and methods that were originally designed for
bare-metal machines.

The containers, of which Docker is a popular implementation, are normally brought up and down on
demand. They are ephemeral as they are lightweight and can be started up with little system
overhead so they could be discarded when not actively in use.

The Dockerization also forced the applications to be redesigned to work as distributed systems with
each functional element is run in one more containers. That enabled a container based system to be
scaled easily and the available compute resources could be allocated much more efficiently. As a
result of inherent architectural change that containerization brought in, the production environments
built using containers become highly dynamic and monitoring of such environments became much
more important than it used to be before.

Common challenges
The dynamicity of container based application infrastructure brings new problems to monitoring
tools. Also, Docker added another layer of infrastructure and network monitoring requirements to
the overall scope.

Think of the typical scenario of multiple VMs provisioned on a bare-metal machine and containers
come and go on each one of those VMs. The monitoring requirements include checking the health
of bare-metal host, the VMs provisioned on it and the containers active at a given point of time. Of
course, how well these components are interacting with each other and to the outer world should
also be checked from the networking side of monitoring requirements. It can soon become mind-
bogglingly complex.

Levels of monitoring
As mentioned earlier, the container is an extra layer for infrastructure monitoring purposes. For
addressing monitoring requirements of a container based application environment systematically,
the monitoring should be implemented at various levels of the infrastructure and application.

Monitor Docker host
Docker containers are run on a cluster of large bare-metal or virtual machines. Monitoring of these
machines for their availability and performance is important. This falls into the traditional
infrastructure monitoring.

Typically, CPU, memory and storage usages are tracked and alerted based on the thresholds setup
for those metrics. Implementing those are relatively easy as any monitoring tool would support it as
part of core features.

https://dev.blogs.bmc.com/it-solutions/truesight-infrastructure-management.html

Tracking containers
The Docker containers are run on a cluster of hosts and a specific Docker instance could be running
on any one of those hosts depending on the scheduling and scaling strategies set in the container
orchestration system used like Docker Swarm, Kubernetes, Apache Mesos and Hashicorp Nomad.

Ideally, there is no need to track where the containers are running but things are not ideal usually in
production (and that’s why you need monitoring in the first place) and you may want to look at a
specific container instance. Tracking information on the up and running containers would be handy
in such situations and also to make sure that scheduling and scaling rules are actually enforced.

Runtime resource usage
As with bare-metal and virtual machines, CPU, memory and storage metrics are tracked for Docker
containers as well. Container specific metrics related to CPU throttling, a situation when CPU cycles
are allocated based on priorities set when there would be competition for available CPU, can also be
tracked.

Tracking of these system performance metrics would help to determine whether resources on bare-
metal and virtual machines, the container hosting infra, need to be upgraded. It would also provide
insights to finetune the resources allocated to a Docker image so its future container instances will
be started up with adequate runtime resources.

The native Docker command “docker stats” returns some of these metrics but a tool like TrueSight is
needed to capture these statistics system wide, for getting notified on potential issues and resolving
those proactively.

Container networking
Checking on container level networks is one of the most important aspect of Docker monitoring. A
container is supposed to run a lightweight component of a distributed application system and
communication between these components has to be reliable and predictable, especially when
there is high dynamicity to a container based environment in which the instances come and go.

Docker provides a container level network layer and also there are third-party tools to expose the
services running on containers. Other components in the system can access a specific service using
a supported method like REST API.

In a highly distributed environment, Docker networking configuration would soon become complex
and it is important to monitor various network access requirements and proxy settings for the whole
system to work.

Container performance
Just like it happens on a bare-metal or virtual machine, the runtime requirements would impact the
overall performance of container and in turn the service running on it. Gathering performance data
from containers is important to finetune those.

Application endpoints
A container-based environment would be running a large, highly distributed application with each
service running on one or more containers. The application checks could be done both at the
container level, pod level and system-wide level. (A pod is a group of containers that offers a
service.) Usually REST API endpoints would be available to perform such checks that could easily be
plugged into any modern monitoring system to check the availability of related services.

Benefits of Docker monitoring
The benefits of Docker monitoring are not different from traditional monitoring. These are the main
points:

Monitoring helps to identify issues proactively that would help to avoid system outages.
The monitoring time-series data provide insights to fine-tune applications for better
performance and robustness.
With full monitoring in place, changes could be rolled out safely as issues will be caught early
on and be resolved quickly before that transforms into root-cause for an outage.
The changes are inherent in container based environments and impact of that too gets
monitored indirectly.

The last point makes it clear that monitoring is an essential part of Docker based environments due
to their dynamicity and availability of application services has to be checked constantly.

Getting started with Docker Monitoring
A group of tools are needed for fully monitoring an application system running in production.
Typically, they will cover infrastructure, network, application features and performance, and last-
mile monitoring and log analytics. (Last-mile monitoring refers to checking on user experience.)

The requirement of Docker monitoring dictates that the monitoring tools selected should cover
container level monitoring also. Or add extra tools, like those discussed already, to take care of that
aspect.

Tracking ephemeral containers
The traditional monitoring is host centric - the tools from that category assume that an application
environment is made of devices with a unique IP address assigned to each one of them. That
approach always posed problem beyond simple infrastructure monitoring because requirements
such as checking an application feature is not just tied to one or more hosts.

The containers come and go and it would be better if those are not tracked individually. The best
method is to tag the containers with keywords. That way time series data from same type of
containers could be looked up for monitoring and operational insights, irrespective of their lifecycle
status.

Conclusion
Usage of containers adds to the operational complexity of an application system and so the

monitoring requirements. Most of the popular monitoring tools are not equipped to monitor Docker
containers though it is not hard to extend them to support containers. New generation monitoring
tools, both open source and licensed, support Docker monitoring out of the box.

The challenges in rolling out a good Docker monitoring system remain the same as with any generic
monitoring systems:

Selecting a set of tools that are most suitable from a wide range of product offerings
Identifying the most important monitoring requirements
Mapping those to the features of selected tools
Making customizations to fill any gaps that are not covered by the tools, especially in the area
of application monitoring
Setting up an alerting and response strategy that will not overwhelm the operations staff

