
DEVOPS FEEDBACK LOOPS: AN INTRODUCTION

A basic concept of system thinking as well as a vital part of your organization’s success,
understanding and properly implementing DevOps feedback loops in your business is a “make-it or
break-it” kind of thing.

As a DevOps professional, you are focusing on creating a streamlined relationship between
development and IT operations. However, to cultivate a successful relationship between and
collaboration of these two business units -- focusing on both speed and quality -- you must first
know how feedback loops influence your process improvements.

What is a Feedback Loop?
A common DevOps term, feedback loops are a largely misunderstood concept Let's begin by
addressing what the words “feedback” and “loop” mean, and then how they work together to
complete useful work. Feedback is defined in the Oxford Dictionary as, “The modification or control
of a process or system by its results or effects” and loop is defined in the Oxford Dictionary as, “A
structure, series, or process, the end of which is connected to the beginning.” When we put these
two terms together, we understand the meaning of a feedback loop to be a system where the
outputs are put back into the inputs to improve the process or product while increasing or
decreasing the effects produced later. Feedback loops are basically an internal review of how
teams, systems, and users function.

Yes, this still seems kind of confusing. So, let’s dive deeper into how feedback loops work in

https://dev.blogs.bmc.com/blogs/devops-basics-introduction/
https://dev.blogs.bmc.com/blogs/devops-engineer-roles-and-responsibilities/
https://www.lexico.com/en/definition/loop


business and technology.

As many experts agree, “feedback loops enforce priorities and project goals so that the freedom and
fast pace in development doesn’t lead it astray.” The objective of this system is to create a circuit
between the two above-mentioned DevOps business units. Essentially starting a flow where when a
change happens in one unit, it causes a change in the other unit, eventually leading to a change in
the first unit. This allows a company the agility to perform necessary corrections continually in the
right direction. Using a feedback loop to collect IT data and create a constant flow of information
simply means valuable growth at an enormous scale. And, one of the best reasons to use DevOps
feedback loops is to bridge the gap between software function and customers’ expectations. This is
organized, optimized change!

A Simple DevOps Feedback Loop
A developer (input) writes some code for a new program. He then sends the newly written code to
the designer to build it. After that, an OS runs the built-out code (output). While running it, the
developer observes the code. After observation, he determines what to do next (input). He sends the
next steps back to the designer and again observes it on the OS (output). Can you see the loop? The
purpose of the feedback loop here is to streamline the way the code is written, delivered, built,
processed, and the time it takes to input modifications. If one of the steps in information delivery is
off, the entire loop will be off.

The Two Types Of Feedback Loops
Reinforcing (positive) 
Also called an accelerating loop or change, this type of loop happens when a group sees a positive
increase resulting in a second group seeing a positive increase, which then causes a positive
increase in the first group. Please note that it can go the other way with a negative influence as well.
Take a moment to note how the above-mentioned example is a positive feedback loop.

Balancing (negative) 
This type of loop is the opposite of accelerating. Balancing happens when a first group sees a
positive increase resulting in a second group seeing a decreased value, which then negatively
decreases the value of the first group. The system will eventually stabilize at a place where no more
change can occur.

As each type of feedback loop embraces varying factors--less leading to less or more leading to
more--the basic function remains the same. As the loop continues, each unit individually changes
while affecting others.

Common Mistakes To Avoid
Focusing on feedback, ignoring the loop1.
Yes, feedback is always great. But, the point of the loop is to take action. Maybe you have
gotten the first steps all in place--integration, building, testing, and deployment. Then things
start failing and commitments increase. Your teams are lost in what to do because they fail to
find the root cause and communicate. Perhaps they saw the feedback but didn’t continue the
loop to solve the problem.

https://searchitoperations.techtarget.com/tip/A-proper-DevOps-feedback-loop-includes-business-leaders


Feedback loops are positive, ignoring the negative2.
Going back to the types of loops, you must, without any compromise define what type you are
dealing with before implementing any changes. If you are focusing on one outcome but the
loop creates a different outcome, balances when not expected, or increases, you will end up
with slower, less effective systems and operations. This process will lead you to issues that are
never fixed.

Failure on training teams to provide feedback3.
Confirming that your entire team can give reliable, usable feedback as well as implementing
any feedback received is a key part of having successful feedback loops. To achieve this, you
can use already existing feedback loops and discuss what is working within the system. Also,
be sure to make all notifications actionable, ensuring follow-through and effectiveness.

Fostering the idea of single loops, not a system4.
While there is value in focusing on just one loop, if you fail to see the entire system of loops,
your single-loop will fail. For example, your system is unstable due to network failure and full
storage space. To fix the problem, you apply a balancing loop, issuing notifications to
employees when an issue occurs. This stabilizes the system. But, you can’t stop there. Once
stabilized, you need to implement an accelerating loop where you can plan for future system
modifications allowing you to expand your network and storage. Without the system of loops
working together, you will hit a change stalemate.

Feedback loops are not notification systems5.
Speaking of notifications, it is important to always remember that alerts and notifications are
just pieces of information. These are not loops in themselves. You need to focus on humans
relating the information from the output into the input rather than relying solely on automated
system alerts. Continually check your automation and improve your loops.

Forgetting to define specific problems6.
An assessment of your current situation will save you a big headache in the future. As each
problem is defined before you start your loops, you can avoid duplicates, unclosed loops, and
system problems. On top of that, when your problems are defined, you can easily define your
type of loop, building from the ground up.

Facilitating reviews without closing the loop7.
From small to large operations, closing the loop and ensuring information feedback actively
arrives to the other end is essential. With machine to person, person to person, machine to
machine, and person to machine communications to consider, you need to make sure every
outlet is communicating correctly with the other outlets. If one is off, they are all going to be
off.

A better understanding of feedback loops
Analysis and optimization of system and software delivery depend on your ability to properly set up
feedback loops. Without them, your business and its structure will fail due to a lack of solved
problems and information being rapidly shared.


