
THE DEATH (OR NOT) OF MICROSERVICES

A form of software development that embraces small, independent components, microservices
have a controversial reputation as both the next best thing and something that’s so passé, it might
already be dead.

Proponents of microservices are quick to cite the successes of Netflix and Amazon, who both work
within some form of DevOps culture while embracing a microservice approach in their software
development. Successfully deploying microservices can give the impression that your system is
highly resilient and fault-tolerant. Plus, one school of thought links microservices with a well-
functioning DevOps culture, rightly or wrongly.

Other say that microservices are just the latest buzzword for a been-there-done-that approach to
software development, but one that’s getting a revamp thanks to rapid development in container
and orchestration technology.

Whether you’re for or against microservices, there’s something to be said for changing how we
approach software development. Technology changes so rapidly in a couple years, let alone an
entire generation, so we should consider changes to how we approach software development.
Perhaps microservices is one approach.

The appeal of microservices
Microservices refer to a software development technique that’s a variation on service-oriented

https://dev.blogs.bmc.com/blogs/devops-basics-introduction/
https://hackernoon.com/monolith-vs-microservice-vs-serverless-the-real-winner-the-developer-8aae6042fb48
https://hackernoon.com/monolith-vs-microservice-vs-serverless-the-real-winner-the-developer-8aae6042fb48
https://en.wikipedia.org/wiki/Microservices


architecture (SOA). Developing microservices means you are designing software as a suite of
independently deployable services. The ideal environment for microservices is very granular,
featuring lightweight protocols and functionality.

Indeed, independence is key to microservices. While there is no specific architecture for
microservices, a microservice environment often has common characteristics such as organization
around business capability, automated deployment, decentralized control of languages and data,
and endpoint intelligence.

Microservices are easier to understand in contrast to a monolithic system. A traditional monolithic
app is usually built as a single unit that has three main parts:

Server-side application, that handles HTTP requests, executes domain logic, and calls up data
from associated database(s)
Databases and external libraries
Client-side user interface

In such a monolith system, any changes to the software requires building, testing, and deploying a
whole new version of the server-side app, with little to no downtime or decrease in services on the
client-side UX.

In everyone’s favorite example of microservices, Netflix started with a single large unit of software: a
video streaming platform. As worldwide use and their content library expanded, their functionality
took a hit. Their solution? To break their bulky single unit into several smaller units of service –
microservices. Each microservice has a specific, individual role: transcoding, uploading, streaming,
downloading, recommending, and managing subscriptions.

Microservices: the pros and the cons
It’s often tempting to replace the old with the new. Developers may think they can do it better, or at
least approach a software problem with a language he’s more familiar with in an attempt to make it
less bloated.

The idea of breaking one massive system into smaller independent functionalities seems beneficial
at first glance. Indeed, this independence can improve some dev cultures. Here are some common
benefits to microservices:

Independent development. If your small team is focused on one or two functionalities, you
can learn and produce at a much quicker pace, especially if you don’t need to interfere with –
let alone know about – what other dev teams are working on.
Independent deployment. Because components in one microservice aren’t related to
components in another (at least in theory), you can deploy faster with reduced risk to other
services.
Independent scalability. Depending on your product, you may have busy times that require
scaling up. But if you only need to scale up part of your product, microservices allow that. For
instance, Netflix may want to improve their streaming microservice around a big new release
(like, say, Stranger Things Season 3). With microservices, they can improve just that one
microservice, which is easier, less risky, and more affordable than retooling the entire system.
Reduced costs. Developing for a single function instead of an entire platform helps keep
resources in check.

https://martinfowler.com/articles/microservices.html


Reusability. Because microservices are so specific to a function, the function can be adapted
for reuse reused in a whole different product, with just a few tweaks and without bringing the
whole monolith environment along.

Of course, we’ve been experimenting with independent functions for some time. Only with the
development of container and orchestration technology has it actually become truly feasible and
more cost effective to implement a microservices approach.

But, let’s tread lightly here. Just because we can all switch to microservices doesn’t mean we
should. Microservices tend to masquerade as a simple solution to a complicated problem.
Unfortunately, the truth eventually comes out: microservices will reveal their true complexities,
something that can be frustrating and difficult to solve.

Experienced developers point out that independent functionality is often a false idol: in the real
world, it’s unlikely that many components or functionalities can, actually, work so independently.
Boundaries between components are a lot muddier than we think, relying on other pieces, needing
to communicate among various functionalities. Unless you can very clearly define boundaries and
separate pieces accordingly, you’ll actually be working with interdependencies – something that
your monolith system is already doing.

Then there’s the issue of more is more: the more you compartmentalize functions, the more
expertise is needed. That’s because lots of things get more complex: running every service in a
feature instead of executing a single program, operating and maintaining a lot more services, trying
to ensure smooth communication, especially as communication paths multiply). With more comes
more risk for failure, and in more places.

For non-DevOps companies, the maintenance team will likely have to manage dozens or hundreds
of microservices, instead of just a single monolith or two. And if you are working in a DevOps culture,
you’ll need a person who understands and stays up to date with the nuances and rapid changes in
container orchestration systems – which ensure all your microservices are up and running. (Not to
mention how elusive that expert person may be.)

In a nutshell, microservices seem to simplify things, but consider all the underlying pieces that, in all
likelihood, will become more complicated. Without serious expertise, componentization can just be
messy. A good way to gauge your team’s expertise: if a single monolith system isn’t running
smoothly, breaking them into smaller services probably won’t make it any better.

Hybrid approach to software development
The current trend is to trade monolithic legacy systems for a bunch of independent but flexible
microservices, which is certainly appealing. But, let’s take the long view. Legacy systems seem to
have garnered a bad reputation, albeit unwittingly. Legacy systems are so named at least in part
because they lasted, they were part of a legacy, a positive thing.

Today, monolith systems remain the most widely used of various software architecture for good
reason: they are easiest to develop. While they come with inherent issues, particularly the longer
they’re in use and the more developers who touch them, they are surprisingly simple to develop in
the earlier stages of product. Quick development means faster time to market, something that start-
ups and SMBs can get on board with them.

Instead of choosing a singular approach to software development, perhaps the answer is to

https://www.dwmkerr.com/the-death-of-microservice-madness-in-2018/
https://www.dwmkerr.com/the-death-of-microservice-madness-in-2018/
https://news.ycombinator.com/item?id=16200007


approach microservices as one tool in your developers’ toolkits. Along with monolith systems and
serverless apps, microservices are useful and appropriate for particular types of tasks and apps.

A future for microservices?
We’re not ready to herald microservices as the silver bullet for software development, but we’re
equally unprepared to sound the death knell. Just as some monoliths age poorly, it’s likely that some
microservices will do the same. It’s too soon to tell.

The bottom line is that breaking a system down into independent components is always risky
because it requires very clear boundaries that are often difficult to discern in the real world. If you
can’t find this balance, you’re simply relocating the complexity. And, experts caution, avoid change
for the sake of change. Trends come and go, so if your processes are already working smoothly, opt
to invest time and money into providing value where it is truly needed.

The likeliest bet for microservices? Turn to your team, their skills, and the product at hand. Good
teams build good products with good tools, and the reverse can be said about bad teams.


