DATA VISUALIZATION: GETTING STARTED WITH EXAMPLES

Here we are going to write a series of blog posts on data visualization. We will use a particularly
interesting data set, exhaustive data on US university admission rates, post-graduation salaries, etc.

The Importance of Data Visualization

Data visualization means graphs aka charts. When working with big data and analytics the
programmer and data scientist can most easily see the relationship between data variables using
graphs. Further it is the best way to show those results to non-technical people.

Graphing can be complicated as there are so many types and variations. But that heavy-lifting is
made easier for Python programmers using matplotlib and Zeppelin. Matplotlib is particularly useful
because it works with Python Pandas data.

College Admittance Data

First, the data we will use is here. There are many data sets and literally thousands of fields there. So
we will use only a few. The data fields are documented here. An overview of the data is here.

Also, the code we write below is here.

https://dev.blogs.bmc.com/blogs/big-data-vs-analytics/
https://matplotlib.org/
https://www.dev.blogs.bmc.com/using-zeppelin-big-data/
https://catalog.data.gov/dataset/college-scorecard
https://collegescorecard.ed.gov/assets/FullDataDocumentation.pdf
https://collegescorecard.ed.gov/data/documentation/
https://github.com/werowe/charting/blob/master/univariateBivariate.md

Chart Types

First, the basic chart types are:

 histogram

e line chart

e area chart

e bar chart

e scatter chart

This are best understood by looking at examples.

Data Types

Then there are data types. For all practical purposes, you are limited as to how many variables you
can put on a chart by your eyes, because the chart can get too crowded to see. So we will start with
two (bivariate).

Univariate This plots one variable against itself, e.g. schools groups by tuition rates.

This is the familiar x-y chart. It plots one variable against another. This is useful for

Bivariate showing the correlation between variables and clusters of data points.

Sample Python Code

Let's define elite schools to be those that take fewer than 7% of applicants. We read the data
directly from the government web site. We pick three fields: the university name (INSTNM),
admissions rate (ADM_RATE), and average SAT score SAT_AVG. Obviously the admission rate
(ADM_RATE) and SAT score are going to be correlated.

Create a Zeppelin notebooks and paste this code into that. You cannot make graphs using the
python command line interpreter. You need a display capable of supporting graphics, Zeppelin
running the browser supports that. (If you do not know Zeppelin download it from here. The easiest
way to install it is to unzip it then run bin/zeppelin-daemon.sh start. Then in a browser open
http.//localhost:8080.)

The code below reads the data into a dataframe.

import matplotlib
import pandas as pd

df =
pd.read csv('https://ed-public-download.app.cloud.gov/downloads/Most-Recent-C
ohorts-All-Data-Elements.csv', usecols=)

Before we show how to plot a graph using matplotlib, we can use the Zeppelin z.show. Nothing can
be easier as it shows the data in table format then lets you click to create the most common chart
types. The icons below show those. Reading left to right, the first is the table display, the others are
bar, pie, area, line, and scatter.

https://zeppelin.apache.org/download.html

ol @ | |~ ,
It takes one line of code to create that

z.show(elite)

n B 0 i 4 =
INSTHM ADM_RATE BAT_ AV
Yakh Liniearsily 0.0e32 1502.0
Harimnd Univrsty 0054 000000000000006 1506.0
Princeton University Duoes2 1483.0
Columbia Unfvensity in the City of New York OuoEE3 1406.0
Staniond Univensy Ouo=381 14760

There is not
enough data to make a busy chart, so let's widen our selection to 134 schools and create a data
frame called excellent.

excellent.shape=(134, 3) tells us there are 134 schools that take between 9% and 40% and of
applicants.

excellent=df.loc < 0.4) & (df > 0.09) & (df > 0)]
print(excellent.shape)

Hexplot

We could make a scatter plot (shown below), which shows data points. But a chart like that can get
crowded, making it hard to read. Instead let's use hextplot. It draw hexagons around data points that
are near each other and colors them based upon the density of that cluster.

excellent.plot.hexbin(x="'SAT AVG', y='ADM RATE',gridsize=25)

As you can clearly see there is definitely a high level of correlation between SAT scores and
admission rate.

0.40 +

30

9
9
0.35 L ‘ 25
Lo
0.30 { 20
= L
=
= 025 . n
=
g
0.20 -
L10
@
015 -
B L0
010 1 e
T T T T T T T T I I}U
BOD 900 1000 1100 1200 1300 1400 1500
SAT AVG
read than the scatter plot:
excellent.plot.scatter(x="'SAT_AVG', y='ADM RATE"')
0.40 t v . ..
* . -. [] ™ a ¥
' . r . . e . . '- o*
035 - o’ -~ . . .
] [4 . L]
- L '- . . I.
0.30 - o * . . "o ™ .
. . o B0 ®
(10 [] [] L]
= [] [] L]
%025 o . A
= L] [] L]
Q L] L] . L] . -
020 4 . . .
- . -
L]
. L L
015 - . - .
L] [N]
. - By &
010 - . s
800 %00 1000 1100 1200 1300 1400 1500
SAT AVG

Bar Chart and Univariate Data

That's easier to

We don't have any categorical (e.g., accepted, rejected) or nominal data (like an allocation of

students into some ranges) that can be plotted against itself, so let's make some.

Read the data again, but this time get the tuition (COSTT4_A). Then we can group schools into
categories by diving the tuition by $5,000 and rounding to the nearest integer.

costs =
pd.read csv('https://ed-public-download.app.cloud.gov/downloads/Most-Recent-C
ohorts-All-Data-Elements.csv', usecols=)

We write the expense function to do that.

def expense(tuition):
return int(tuition/5000)

tuition = costs
nominalCosts= tuition.dropna()

Now we use the value_counts Pandas function to group and count schools by tuition. Note how the
plot matplotlib function works directly with Pandas dataframe.

costRange.value counts().plot.bar()

Out of the 3,655 schools, more than 800 cost less than $10,000. But 13 of them cost $65,000.

800 -

700 1

B00

300 1

400 4

300 +

200 1

100 4

In the next blog
post we will explore other graph types and how to add more features.

