BIAS AND VARIANGE IN MACHINE LEARNING

The risk in following ML models is they could be based on false assumptions and skewed by noise
and outliers. That could lead to making bad predictions. That is why ML cannot be a black box. The
user must understand the data and algorithms if the models are to be trusted. So, here, we look at
some more measures of trustworthiness.

As in the previous blog post, the way to flush out these errors is by looking at the different metrics
associated with the ML model and understanding something about the data and which models work
best for which types of data. You then pick different training models to find the one that has the
lowest bias versus variance tradeoff. In an ideal world you would seek to minimize bias and
variance. But as the word tradeoff suggests, its not that simple.

What is bias in machine learning?

Bias is the same as the mean square error (MSE).

e Variance shows how subject the model is to outliers, meaning those values that are far away
from the mean.

* Noise is the unexplained part of the model. In terms of statistics, noise is anything that results
in inaccurate data gathering, such as using measuring equipment that is not properly
calibrated.

Models with high bias tend to underfit the training data while those with high variance tend to overfit:

e Overfit means the model is subject to outliers and noise.
» Underfit means the model could look at other inputs (i.e., additional features).

https://dev.blogs.bmc.com/blogs/machine-learning-interpretability-vs-explainability/
https://dev.blogs.bmc.com/blogs/mean-squared-error-r2-and-variance-in-regression-analysis/

Models with low bias can be subject to noise.

Examples of bias and variance

Let's look at three examples. Here we take the same training and test data. The only difference is we
use three different linear regression models (least squares, ridge, and lasso) then look at the bias
and variance of each. (Here is the code in Zeppelin notebook format.)

First, to summarize we have these results. Below is the code and the graphs.

algorithms coefficient bias variance
least squares 2 13.88 101.15
ridge 1.6 33.11 494.27
lasso 1.6 17.46 154.25

Which algorithm is best? Each has their own bias, which is why the logic in each is coded in a
manner to drive out the sensitivity to outliers, noise, and flag which models are over or underfit.

You should have some understanding of what kind of data you are dealing with and hot the
algorithm works. For example, are there many outliers or noise in your data. Is the model you have
picked a higher order polynomial (i.e. a curve instead of a line) which can overfit the training data,
meaning track it too closely, in a way that is not natural. Finally, you would need to understand the
differences between each algorithm. (Here is some guidance from scikit-learn on choosing the right
model)

Anyway, below we use the same code as in the last blog post with some changes. As you can see
we have made the x features and y labels perfectly correlate. That is reflected in the least square
coefficient of 2, meaning for each x, f(x)=2x.

The data is the same, and the model is linear in all three cases. The only difference is the slope of
the line, i.e., the coefficient. So all three graphs are going to look about the same.

Notice that we normalize the data with preprocessing.scale so that the will have the same scale so
that the graphs of the prediction model and the data points will roughly coincide.

import matplotlib.pyplot as plt

from sklearn
import numpy
from sklearn.
from sklearn

import linear model

as np

metrics import mean squared error
import preprocessing

def newsample(xTest, ytest, model):

ar = np.array(,,1, ,,11)
y = ar

X = ar

if model ==

reg = linear model.LinearRegression()
reg.fit(x,y)

print('least square Coefficients: \n', reg.coef)

https://raw.githubusercontent.com/werowe/biasandvariance/master/python.json
http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

a
b

if model ==
reg = linear model.Ridge
reg.fit(x,y)

(alpha = 0.1)

print('ridged Coefficients: \n', ridge.coef)

if model ==

reg = linear model.Lasso(alpha = 0.1)

reg.fit(x,y)

print('lasso Coefficients: \n', ridge.coef)

preds = reg.predict(xTest)

er = []

for 1 in range(len(ytest)):
print("actual=", ytest,
X = (ytest - preds) **2
er.append(x)

V = np.var(er)
print ("variance", v)

" preds=", preds)

print("Mean squared error (bias): %.2f" %
mean _squared error(ytest,preds))

tst = preprocessing.scale(ytest)
prd = preprocessing.scale(preds)

plt.plot(tst, prd, 'g™')

x1 = preprocessing.scale(xTest)
fx = preprocessing.scale(xTest * reg.coef_)

plt.plot(x1,fx)
plt.show()

np-arraY(; r])
np.array(,,])

newsample(a,b, 1)

Results in

least square Coefficients:

actual= preds=
actual= preds=
actual= preds=

variance 101.14880000000011
Mean squared error (bias): 13.88

10 4

05 4

0.0 4 &

=1.0 4

1.0 05 0.0 05 10

Run the program
again, but this time use the Ridge algorithm.

newsample(a,b, 2)
Results in

ridged Coefficients:

]

actual= preds=
actual= preds=
actual= preds=

variance 494.2656834019206
Mean squared error (bias): 33.11

10 4

05 4

0.0 4 &

=1.0 4

1.0 05 0.0 05 10

algorithm:
newsample(a,b, 3)

lasso Coefficients:
]
actual= preds= 7.7
actual= preds= 9.55
actual= preds= 11.400000000000002
variance 154.25326249999975
Mean squared error (bias): 17.46

Run with the Lasso

10 4

05 4

00 4

—0.5

=1.0 4

0.0

05

10

