AWS Elastic Block Store (EBS) is Amazon’s block-level storage solution used with the EC2 cloud service to store persistent data. This means that the data is kept on the AWS EBS servers even when the EC2 instances are shut down. EBS offers the same high availability and low-latency performance within the selected availability zone, allowing users to scale storage capacity at low subscription-based pricing model. The data volumes can be dynamically attached, detached and scaled with any EC2 instance, just like a physical block storage drive. As a highly dependable cloud service, the EBS offering guarantees 99.999% availability.
AWS EBS is different from the standard EC2 Instance Store, which merely provides temporary storage available on the physical EC2 host servers. The EC2 Instance Store is useful for temporary data content such as caches, buffers or files that are replicated across the hosted servers. For data that needs to be available persistently, regardless of the operating life of an EC2 instance, the AWS EBS offers the following storage volume options:
It’s important to note that each storage option doesn’t represent individual physical storage media, but a distributed system of storage options as per the categorized volume options. This AWS resource provides a detailed overview of the various EBS volume types.
AWS EBS includes powerful features that make it easier to store persistent data automatically and reliably while optimizing cost investments on the cloud storage. The prominent features include:
This feature allows point-in-time storage of data volumes incrementally, while only charging for the change in data volume. For instance, if 5GB of data was added to an existing 100GB of storage block with the snapshot, AWS will only charge for the additional 5GB of data. Snapshots can be expanded, replicated, moved, shared, copied, modified, managed and organized within and across AWS Availability Zones using the Amazon Data Lifecycle Manager and the Tag feature. All EBS Snapshots are stored in AWS S3 that guarantee up to 11x9’s of durability. Snapshots are not stored as user accessible objects but accessed via the EBS API. The Snapshots are stored behind the Amazon Machine Images (AMI), providing all necessary information to recover data and launch EC2 instances in the cloud accordingly.
The Snapshot capability is key to business continuity plans for mission-critical apps and services. Users can define Recovery Time Objectives (RTO) and Recovery Point Objectives (RPO) and manage the snapshots to meet those objectives. In addition to the data backup and disaster recovery objectives, customers also use EBS Snapshots to capture production data for testing and development. EBS Snapshots and volumes also support encryption, allowing users to create custom CMK when needed from the AWS IAM management console.
The EBS Optimized Instances offer burst of performance improvements for storage workloads that require short and intense periods of high device I/O operations. The throughput performance for EBS-optimized instances can vary between 4250 to 14,000 Mbps based on the instance type. For instance, the SSD GP2 volume option is designed to operate within 10 percent of its baseline and burst performance, for 99 percent of the time that it’s used as such. This capability allows low spec instances to replicate the high performance of larger instances for a limited period of the day. This feature allows users to right-size their instances while accommodating EBS demand spikes. As a result, the EBS volumes are optimized for a variety of storage use cases and the demand spikes do not impact end-user or customer experience. The EBS solutions are optimized by default or available on a low hourly pricing.
Details are available on Amazon EBS–Optimized Instances guide here.
Other notable features of the AWS EBS include:
The choice for AWS EBS volumes should be a part of an exhaustive cloud management strategy, along with the necessary resources on maximizing the value potential of the available AWS EBS tooling and features. The strategy should include an in-depth analysis of the storage volume I/O performance and data transmission throughput requirements, backup and disaster recovery objectives, as well as budgeting and financial planning for scalable workloads. With the vast selection of Amazon Elastic Block Store, businesses can then choose appropriate storage capabilities for a variety of use cases while maintaining an optimal balance between cost, performance and dependability of their persistent data storage portfolio.