AWS CLOUDFORMATION BASICS

In the cloud native era, infrastructure as code (1aC) is a critical part of ensuring consistency and
reusability. Most public providers have a version of 1aC they offer; for AWS, it is CloudFormation.

CloudFormation helps you model your resources by describing it in a template that can be
deployed as a stack on AWS. With CloudFormation, you can go from creating resources from the
console to automating complex architecture on demand. Let's get started with these basics of AWS
CloudFormation.

The henefits of using CloudFormation

CloudFormation offers a variety of benefits, including:

* Improved automation. The simplicity of the template allows you to declare what you want
your resources to look like. This eliminates the need to rely on other scripting tools to create
the resources.

e Quick infrastructure replication. You can quickly replicate your infrastructure without
affecting other resources that your template previously created. The template can be used to
create as many stacks as needed.

* Infrastructure consistency. The declarative way of defining templates allows for
consistency—you can be assured that stacks created with the template will be identical.

» Easy-to-read template. If you are in the web application or microservice space, you have used
yaml or JSON at some point. They are both widely used, therefore making it easy to
understand or find resources on it.

https://dev.blogs.bmc.com/blogs/infrastructure-as-code/
https://aws.amazon.com/cloudformation/
https://dev.blogs.bmc.com/blogs/aws-serverless-applications/

How does CloudFormation work?

There are three concepts you need to be aware of when using CloudFormation, and these concepts
are fundamental to how it works:

e Template
e Stack
e Change Set

Let's look at each.

Template

A template is a declarative way of defining your resources as a yaml or json file. This template can
then be used to deploy the resources either using the console or CLI.

This demo.yaml template shows an example of a yaml template file that creates an EC2 instance
and Elastic IP and attaches the IP to the instance.

AwWSTemplateFormatVersion: "2010-09-09"
Description: A demo template
Resources:

MyEC2Instance:

Type: "AWS::EC2::Instance"
Properties:

ImageId: "ami-0f7919c¢33c90f5b58"
InstanceType: t2.nano

KeyName: testkey

MyEIP:

Type: AWS::EC2::EIP

Properties:

Instanceld: !Ref MyEC2Instance

Stack

When you deploy a template like the example we had above, it creates both resources (EIP and
EC2) as a stack. These resources are created as a unit; therefore, any update or deletion of resources

will be applied to the stack.

You can use a single template to create multiple stacks as long as there are no naming conflicts.

Change Set

When a stack needs to be updated, you can simply run an update on the stack and let AWS take
care of replacing the necessary resources. Change Set takes that further and gives you the ability to
see the impact of the changes you are applying before they are actually applied. In the terraform
world this would be equivalent to terraform plan.

A basic CloudFormation example

To demonstrate how CloudFormation works, we will deploy the demo.yaml template. There are two
ways to deploy the template, from the console or CLI. For this demo we will use AWS CLI which
allows us to trigger CloudFormation APl actions.

(This example assumes you have an AWS account, networking setup, access keys and AWS CLI
installed.)

Create a stack

To create a new stack, run:

aws cloudformation create-stack --stack-name demo-stack --template-body
file://demo.yaml

After running this command, you should see an output that looks like this:

{

"StackId": "arn:aws:cloudformation:us-east-2:<ACCOUNT>:stack/demo-
stack/a2ade760-7ccc-1lea-bcf5-06d398e7edd6"

}

If there are no errors with the deployment, you should see the stack creation as complete in the
AWS console.

demo-stack

2020-04-12 09:05:04 UTC-0600
() CREATE_COMPLETE

O

Updating a stack

Let's say you want to update the stack to use a different instance type. You can simply update the
template, removing t2.nano and adding t2.micro. With that change we can then run the update-
stack API action to deploy that change. This is also a good time to use a change set to check the
impact of our changes.

Run:

https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

aws cloudformation create-change-set --stack-name demo-stack --change-set-
name demo-changeSet --template-body file://demo.yaml

In the AWS console we can see the changeset we just created:

Stack info Events Resources Outputs Parameters Template Chamge sets
Change sets (1) &
Q, 1 &
Name Created time Status Description
dema-changeSet 2020-04-12 05:32:42 UTC-0600 (=) CREATE_COMPLETE C[ICK on the

change set hame and you should see what will happen if you apply this change set. The image
below shows the one for demo-changeSet.

Action Logical 1D Physical ID Resource type Replacement

MyECZInstanoe i-0b2295a05aBc 1 4a7d [AWSCECZ-Instance Cenditional
MyEIP 18.2718.202.26 [4 AWS-ECZ-EIP False

As we can see,
both the EC2 and ElasticlP will be modified. Also, it looks like the EC2 instance will be replaced. In
our case, we are fine to replace the EC2 instance so we can go ahead and apply the changeset.

To apply the change set, we can run:

aws cloudformation execute-change-set --stack-name demo-stack --change-set-
name demo-changeSet

In the AWS console, we can see the changes being applied.

demo-stack

2020-04-12 09:05:04 UTC-0600
@ UPDATE_IN_PROGRESS

©

Deleting a stack

To delete the stack, you can run the delete-stack API action. In the demo example, run:
aws cloudformation delete-stack --stack-name demo-stack

In the console, you can see the stack being deleted.

demo-stack

2020-04-12 09:05:04 UTC-0600
(@ DELETE_IN_PROGRESS

©

