
K-MEANS CLUSTERING IN APACHE IGNITE MACHINE LEARNING

Here we show how to use Apache Ignite Machine Learning to do classification using the K-Means
Clustering algorithm. The code is in Scala.

If you’re new to this, start with our introductory tutorial for Apache Ignite Machine Learning. We’ve
also previously covered K-means clustering, which finds the centers and assigns each set of
features to one. See our Python and Spark tutorials.

What is interesting about Ignite queries is they support SQL. That is because Ignite can store all
kinds of data. In this example we just put vector data, since that's what machine learning uses. But
you can put traditional database data in Ignite as well—that is its true purpose.

The problem with Apache Ignite is there are not too many examples on the internet. The few that are
there are too difficult to understand. Apache Ignite does have a user guide, but it’s not detailed. The
guide points you to examples, but it doesn’t explain them. That means you have to look at the
JavaDocs to try to figure out how to do things—which is what we’ve done for you here.

Ignite ML K-means tutorial
The code for this example is here. You don't need to install Apache Ignite in order to run this
example. This is because this program will start an Ignite instance by itself.

Download the two_classed_iris.csv data from GitHub here. It's not important to know what that data
means. We just need to know that it's a features-label dataset suitable for K-means clustering.

https://dev.blogs.bmc.com/blogs/apache-ignite-machine-learning/
https://dev.blogs.bmc.com/blogs/python-spark-k-means-example/
https://dev.blogs.bmc.com/blogs/k-means-clustering-apache-spark/
https://github.com/werowe/InsightML/blob/master/Kmeans.scala
https://github.com/apache/ignite/blob/master/examples/src/main/resources/datasets/iris.txt

Start Ignite and create the data cache
This code starts an instance of Apache Ignite. It's not necessary to install Ignite. The program
downloads the JAR files needed to make it run. Then this Scala program starts it.

(Note: When you start the example below Ignite starts but does not stop. That's because we have
started an instance.)

First, we give Ignite two working directories. Note that we use the default constructor
IgniteConfiguration().

 val PersistencePath = "/Users/walkerrowe/Downloads/ignite"
 val WalPath = "/Users/walkerrowe/Downloads/wal"

 val config = new IgniteConfiguration()

 val ignite = Ignition.start(config)

Write data to Ignite
This method creates a cache object into which we will write the data. It's called cache, because
Ignite calls its database an in-memory cache. (It is a distributed in-memory cache, which is what
makes it so powerful.)

 val dataCache = getCache(ignite)

This code is not necessary to explain. I just copied it from one of their examples and converted it to
Scala using IntelliJ. It just created the cache object and makes it ready to receive data.

private def getCache(ignite: Ignite) = {
 val cacheConfiguration = new CacheConfiguration
 cacheConfiguration.setName("ML_EXAMPLE_" + UUID.randomUUID)
 cacheConfiguration.setAffinity(new RendezvousAffinityFunction(false, 10))
 ignite.createCache(cacheConfiguration)
 }

Read file into Ignite data cache
Now we read the .csv file and form a label-features vector. The data is one label, the first column,
and 4 features columns. The data is fixed width with no delimiter other than spaces.

0 5.1 3.5 1.4 0.2
0 4.9 3 1.4 0.2
0 4.7 3.2 1.3 0.2
0 4.6 3.1 1.5 0.2
0 5 3.6 1.4 0.2
0 5.4 3.9 1.7 0.4

Here we use the Ignite utility VectorUtils.of(double values …) to create a vector. We will use another
vector utility to tell Ignite which column is the label and which are the features.

The method put() writes the data to the Ignite data cache. The format is put(key, value), where
value is, in our example, a Vector.

val file =
"/Users/walkerrowe/Documents/igniteSource/ignite/examples/src/main/resources/
datasets/two_classed_iris.csv"

 val bufferedSource = io.Source.fromFile(file)

 var i: Integer = 0
 for (line <- bufferedSource.getLines) {

 val cols: Array = line.split("\\s+").map(_.trim)

 dataCache.put(i, VectorUtils.of(cols(0).toDouble,
 cols(1).toDouble, cols(2).toDouble,
 cols(3).toDouble, cols(4).toDouble))
 i = i + 1
 }
 bufferedSource.close

Preprocessing
The call to the training model trainer.fit(ignite, dataCache, vectorizer) includes a vectorizer.

We use DummyVectorizer, which you could call the do-nothing vectorizing as it only separates
features and labels. LabelCoordinate.FIRST is an enumeration (enum) that means take the first
column in the Vector as the label.

val vectorizer = new
DummyVectorizer().labeled(Vectorizer.LabelCoordinate.FIRST)

Ignite has a whole set of preprocessors. Those do the things you would normally do with machine
learning data like:

Extracting features
Normalizing data (i.e., scaling it)
Forcing text or real numbers based on a threshold to labels, e.g., 0 or 1
Replacing missing values with something like the average of other values
Creating a one-hot vector, which is a special way of encoding categorical data

Create and train the model
Now we train the model. There are a handful of parameters, but we take the default. Then we set
the number of clusters to 2 since all the input labels are either 0 or 1.

val trainer = new KMeansTrainer()

https://dev.blogs.bmc.com/blogs/data-normalization/

 trainer.withAmountOfClusters(2)

 val mdl = trainer.fit(ignite, dataCache, vectorizer)

Print the cluster centers
The goal of k-means clusters is to find the centers and to assign each set of features to one of the
clusters. So here we print the coordinates that are the centers of the two clusters.

 val centers: Array = mdl.getCenters

 for (c <- centers) {
 System.out.print("centers ")
 for (a <- c.asArray()) {
 printf("%.2f ", a)
 }
 System.out.println("\n")
 }

Create a cache query and run predictions across that
Now we loop through the data we have written to the Ignite data cache. Then we run a prediction on
it based upon the model we just trained. Then we print the label and the prediction. The goal is to
see whether the prediction is right, meaning our model is accurate.

We could also have calculated the accuracy. That is:

(number of times prediction = label) / (number of records)

We create a QueryCursor with cursor.getAll. Then we loop through it and use getValue() to retrieve
the Vector and get() to retrieve individual vector elements. We use the Vectorutil
copyOfRange(start,end) to copy the features to a features vector. The label is the first element
getValue.get(0).

Then we run predict() to make a prediction, i.e., feed in the features and find the cluster to which
those coordinates belong, i.e., the label.

val cursor = dataCache.query(new ScanQuery)
 val all = cursor.getAll

 for (i <- 0 until all.size() - 1) {
 var r = all.get(i)

 val features = r.getValue.copyOfRange(1, r.getValue.size())
 val label = r.getValue.get(0)
 printf("label=%.2f = features=", label)

 for (f <- features.asArray()) {
 printf("%.2f,", f)

 }
 print("\n")

 val prediction = mdl.predict(features)

 System.out.printf("prediction = %.2f \n", prediction.toDouble)

 println("===")

Here are the results:

centers 5.01 3.42 1.46 0.24

centers 5.94 2.77 4.26 1.33

===
label 0.00 5.10,3.50,1.40,0.20,
prediction 0.00
===
label 0.00 5.40,3.70,1.50,0.20,
prediction 0.00
===
label 0.00 5.40,3.40,1.70,0.20,
prediction 0.00
===
label 0.00 4.80,3.10,1.60,0.20,
prediction 0.00
===
label 0.00 5.00,3.50,1.30,0.30,
prediction 0.00

...

===
label 1.00 5.20,2.70,3.90,1.40,
prediction 1.00
===
label 1.00 5.60,2.50,3.90,1.10,
prediction 1.00
===
label 1.00 5.70,2.60,3.50,1.00,
prediction 1.00
===

label 1.00 5.50,2.50,4.00,1.30,
prediction 1.00

The complete code
Now, to run the complete code you need this Scala build.sbt file.

{
libraryDependencies ++= Seq(
 "org.apache.ignite" % "ignite-core" % "2.8.1",
"org.apache.ignite" % "ignite-ml" % "2.8.1")
}

And here is the complete code:

package com.bmc.ignite

import java.util.UUID
import org.apache.ignite.Ignite

import org.apache.ignite.Ignition
import org.apache.ignite.cache.affinity.rendezvous.RendezvousAffinityFunction
import org.apache.ignite.configuration.CacheConfiguration
import org.apache.ignite.configuration.IgniteConfiguration
import org.apache.ignite.ml.clustering.kmeans.{KMeansModel, KMeansTrainer}

import org.apache.ignite.ml.math.primitives.vector.Vector
import org.apache.ignite.ml.math.primitives.vector.VectorUtils

import org.apache.ignite.ml.dataset.feature.extractor.Vectorizer
import org.apache.ignite.ml.dataset.feature.extractor.impl.DummyVectorizer

import org.apache.ignite.cache.query.ScanQuery

object Main extends App {

 val PersistencePath = "/Users/walkerrowe/Downloads/ignite"
 val WalPath = "/Users/walkerrowe/Downloads/wal"

 val config = new IgniteConfiguration()

 val ignite = Ignition.start(config)

 val dataCache = getCache(ignite)

 val file =

"/Users/walkerrowe/Documents/igniteSource/ignite/examples/src/main/resources/
datasets/two_classed_iris.csv"

 val bufferedSource = io.Source.fromFile(file)

 var i: Integer = 0
 for (line <- bufferedSource.getLines) {

 val cols: Array = line.split("\\s+").map(_.trim)

 dataCache.put(i, VectorUtils.of(cols(0).toDouble,
 cols(1).toDouble, cols(2).toDouble,
 cols(3).toDouble, cols(4).toDouble))
 i = i + 1
 }
 bufferedSource.close

 val vectorizer = new
DummyVectorizer().labeled(Vectorizer.LabelCoordinate.FIRST)

 val trainer = new KMeansTrainer()
 trainer.withAmountOfClusters(2)

 val mdl = trainer.fit(ignite, dataCache, vectorizer)

 val centers: Array = mdl.getCenters

 for (c <- centers) {
 System.out.print("centers ")
 for (a <- c.asArray()) {
 printf("%.2f ", a)
 }
 System.out.println("\n")
 }

 val cursor = dataCache.query(new ScanQuery)
 val all = cursor.getAll

 for (i <- 0 until all.size() - 1) {
 var r = all.get(i)

 val features = r.getValue.copyOfRange(1, r.getValue.size())
 val label = r.getValue.get(0)
 printf("label=%.2f = features=", label)

 for (f <- features.asArray()) {

 printf("%.2f,", f)
 }
 print("\n")

 val prediction = mdl.predict(features)

 System.out.printf("prediction = %.2f \n", prediction.toDouble)

 println("===")

 }

 private def getCache(ignite: Ignite) = {
 val cacheConfiguration = new CacheConfiguration
 cacheConfiguration.setName("ML_EXAMPLE_" + UUID.randomUUID)
 cacheConfiguration.setAffinity(new RendezvousAffinityFunction(false, 10))
 ignite.createCache(cacheConfiguration)
 }

}

