
WRITING SQL STATEMENTS IN AMAZON REDSHIFT

In this tutorial, we show how to write Amazon Redshift SQL statements. Since this topic is large and
complex, we start with the basics.

This tutorial will show you how to:

Use the query editor
Aggregate rows using group by
Convert dates to year and month
Export the results to a csv file

Redshift query editor
To open the query editor, click the editor from the clusters screen. Redshift will then ask you for your
credentials to connect to a database. One nice feature is there is an option to generate temporary
credentials, so you don't have to remember your password. It's good enough to have a login to the
Amazon AWS Console.

Below we have one cluster which we are resuming after having it in a paused state (to reduce
Amazon billing charges).

You write the SQL statement here. Only one statement is allowed at a time, since Redshift can only
display one set of results at a time. To write more than one statement click the plus (+) to add an
additional tab.

When you run each query, it takes a few seconds as it submits the job and then runs it. So, it's not
instantaneous, as you might expect with other products.

The results are shown at the bottom where you can export those as a CSV, TXT, or HTML. You can
also chart the results.

Get table schema
For this tutorial, we use a table of weather data. (See more on loading data to Amazon Redshift from
S3.) This is 20 years of weather data for Paphos, Cyprus. It has four columns:

dt_iso
temp
temp_min
temp_max

dt_dso is of type timestamp and is the primary key. One nice thing about Redshift is you can load
the date in almost any format you want, and Redshift understands that. Then Redshift provides the
to_char() function to print out any part of the date you want, like the hour, year, minute, etc.

To look at the table schema query the pg_table_def table.

SELECT *

FROM pg_table_def

WHERE tablename = 'paphos'

AND schemaname = 'public';

Here is the schema.

schemaname,tablename,column,type,encoding,distkey,sortkey,notnull

public,paphos,dt_iso,timestamp without time zone,none,t,1,t

public,paphos,temp,real,none,f,0,f

public,paphos,temp_min,real,none,f,0,f

public,paphos,temp_max,real,none,f,0,f

Aggregate SQL statements
This query calculates the average temperature per month for the summer months May through
September. Notice:

to_char() extracts any portion of the date that you want, such as YYYY year or MM month
number.
We use the in() statement to select the months.
The order statement uses a 1. That means use the first column returned by the query. That's an
alternative to typing the column name.
We group by the year and month since we want to calculate the average for month within the
year
We use the round() function to round two decimal places. Otherwise Redshift gives too many
decimal places.

https://www.dev.blogs.bmc.com/amazon-redshift-load-data/
https://www.dev.blogs.bmc.com/amazon-redshift-load-data/

As with other databases, the as statement lets us give an alias to the column resulting from the
calculating. Without it the column would not have a descriptive name. Here we call the
average temperature aveTemp.

select round(avg(temp),2) as aveTemp,

 to_char(dt_iso,'YYYY') as year,

 to_char(dt_iso,'MM') as month

 from paphos where

 month in ('05','06','07','08','09')

 group by year, month

 order by 1 desc

Here are the results. It shows the hottest months for the 20 years of data. I have cut off the display to
make it short. For example, in the 20 years, August 2010 was the hottest month.

We grouped by year then month as we want the month within the year given daily weather
observation.

avetemp year month

84.11 2010 8

83.12 2012 8

83.05 2012 7

82.9 2015 8

82.39 2017 7

82.04 2014 8

81.85 2007 7

81.73 2020 9

81.72 2013 8

81.72 2008 8

81.62 2000 7

81.61 2009 8

81.49 2017 8

We export the data to a csv format using the button to the right of the results. Then we import it to a
spreadsheet so that we can more easily see the results and give it colors and such.

Here are the hottest years. We get that
by dropping the month from the aggregation.

select round(avg(temp),2) as aveTemp,

 to_char(dt_iso,'YYYY') as year

 from paphos

 group by year

 order by 1 desc

Additional resources
For more tutorials like this, explore these resources:

BMC Machine Learning & Big Data Blog
AWS Guide, with 15 articles and tutorials
How To Import Amazon S3 Data to Snowflake
How To Connect Amazon Glue to a JDBC Database
Amazon Braket Quantum Computing: How To Get Started

https://dev.blogs.bmc.com/blogs/categories/machine-learning-big-data/
https://dev.blogs.bmc.com/blogs/aws-serverless-applications/
https://dev.blogs.bmc.com/blogs/import-data-s3-snowflake/
https://dev.blogs.bmc.com/blogs/aws-glue-jbdc-database/
https://dev.blogs.bmc.com/blogs/aws-braket-quantum-computing/

