
ACCELERATING AGILE DELIVERY WITH ITSM INTEGRATION

IT leaders are increasingly asking how their teams can speed service and applications delivery,
rolling out new and cutting-edge technologies to their user communities at breakneck speed. This
mandate, providing cost-efficient and value-added services, demands that CIOs work diligently to
improve collaboration within their developer teams while striving to reduce the developer’s overall
level of effort.

Accelerating any development delivery demands that Development and Operations teams execute
their tasks with greater synchronization, less manual effort and fewer hand-off’s. This sounds easy
and intuitive; however, the process slows down because developers are often required to input and
maintain similar types of information in both development and defect management tools (e.g., Jira
and Rally), in operational tools (e.g., IT Service Management platforms) and may also be required to
hand off the information to the operations team to administer. As a result, the development process
slows significantly and becomes very repetitious and tedious to execute. Additionally, information
common to both Agile and ITSM platforms (e.g., development or defect lifecycle information
needed within change or problem management tasks) is often not updated or synchronized due to
the significant time and effort required to manage work across multiple systems. Hence, to improve
the speed of delivering applications results to the enterprise while reducing operational risk, these
duplicative and sequential efforts need to be reduced or eliminated.

I will share in this blog that this is best achieved by:

Enabling application developers to focus on their agile development work in tools they are
familiar with; AND
Integrating those tools with operational service management capabilities.



As you integrate these capabilities, your development and operations teams will benefit from the
increased agility you achieve within your end-to-end Dev/Ops lifecycle.

To arrive at this seamless, agile state, I will illustrate my recommended three step best practice that
you can begin using right way. These steps are:

Identify, prioritize and select the use cases that support your required outcomes;1.
Define and design the use case details (e.g., triggers, data, tools, etc.) for your integration; and2.
Implement using existing API’s or integration tools.3.

Let’s get started with the first step.

Identify, prioritize and select the use cases that support your required
outcomes
While many IT leaders and their teams have an awareness of where they struggle and where they
can improve with Dev/Ops integration, the ability to gain the greatest and lasting benefit begins with
clearly identifying and prioritizing the outcomes and use cases needed to achieve success. There is
no single use case or prescriptive set of priorities that applies to all the potential interactions and
integrations between Development and Operations. Dev/Ops integration needs are triggered in
numerous development and operational scenarios with some common, bi-directional use cases.

Operationally, within ITSM these cases are supported by Incident Management, Change
Management and Problem/Defect Management and may require initiation from either the Service
Management platform or from within the development lifecycle and the Agile development
capabilities. In virtually all cases, some level of bi-directional integration capability is necessary to
accomplish the desired outcome.

Below, I describe the use cases most often encountered when integrating Development and
Operations using ITSM capabilities. These common use cases should be of assistance in the
identification and prioritization of Dev/Ops integrations for your company’s needs:

Request and Incident Dev-Ops Cases – Requests for new development and enhancements
from the business occur constantly. Development tools do not provide an enterprise level
digital catalog and request capability that enables a requestor to initiate and track the status of
their requests along with all other work they request from IT. Utilizing a tool like BMC Helix
Digital Workplace enables development requests to be managed like all other IT requests.
What follows are a couple of use cases emerging that integrate the request process for
development work between BMC Helix Digital workplace and a set of development tools (Jira):

Use Case 1: Create Jira User Story from a Digital Workplace Request
Use Case 2: Jira User Story Updates – update the originating Request Progress

Change and Development System Use Cases – New development is often initiated from
within the development cycle in the form of Agile “User Stories,” or other identified
development triggers and events. Developers initiate and track this work within their
development tools such as Jira or Rally as a part of the Agile development cycle. Yet, much of
that work also needs to initiate Change Records to ensure the proper levels of rigor and
compliance are applied. As a result, information that is tracked in the development tools must
also be established and synchronized with change records, thus requiring duplicate effort and
lost time. The following use cases that support integration between Change Management and

https://dev.blogs.bmc.com/it-solutions/digital-workplace.html
https://dev.blogs.bmc.com/it-solutions/digital-workplace.html


development tools, such as Jira, can significantly reduce the amount of time spent managing
change records and tasks as well as ensure change compliance and risk requirements are fully
addressed with reduced effort:

Use Case 3: Jira Development project needs to initiate a change request CRQ
Use Case 4: Jira Project needs to update a CRQ/Task based upon defined
development activities
Use Case 5: Operational updates within Change trigger actions in Jira

Problem/Defect Management Use Cases – New problems are often identified in both
operations and within the development and release cycle as “Defect” backlog for developers
to work. For new problems identified in ITSM operations, this requires creating new defect
records and then tracking constant updates to those records back in the parent problem
record. Conversely, defects found during application/service testing and not fixed need to be
established as problems and potentially known error records within ITSM. Managing all these
records and the constant updates is very time-consuming. If done poorly, IT operational teams
may not have visibility into known problems or errors. Teams are demanding a better way of
streamlining the information between problem management and defect management to
minimize manual efforts and ensure information is current within both systems. The use cases
supporting the integration with problem management and defect management that help
minimize work and increase visibility to defect work include:

Use Case 6; A Problem Record is raised. Create Problem Backlog Record in Jira
Use Case 7: Problem management monitors Jira for Updates to problems
Use Case 8: On Demand Update to the Problem Record
Use Case 9: New Defects found during development testing (not addressed) – are
transferred to backlog and need a Problem/Known error (and possibly workarounds)
created.

Define and Design the Use Case Details
Once the use cases that provide the most value to your business have been agreed upon, you
should design the detail that will deliver the integration. This includes defining the data that will pass
back and forth, the timing and events within the process, and the tool that triggers the execution of
the automation/integration. This will also help you identify the best tools to support the integration
described in the last step below. We recommend taking a rapid, Agile development approach to the
integration design and starting with designing the initial set of attributes and capabilities needed.
Lastly, I recommend executing in your integration design using incremental sprints with regular
check-ins.

Implement the integrations
To implement your well-defined requirements, look to your existing, out-of-the-box integrations
within your BMC Helix ITSM. Remedy provides foundational support for some of the basic use cases
such as items 1 and 2 listed above. Rest API’s are also available within Remedy to enable direct
integration where the design requires. In addition, BMC’s tools such as TrueSight Orchestration and
Control-M can help you deliver integration outcomes. For unique use cases that aren’t delivered
with out-of-the-box capabilities, BMC Helix Platform provides capabilities to quickly build and
enhance integrations as needed between Remedy and your Agile development platforms to meet
and extend your unique outcomes.

https://dev.blogs.bmc.com/it-solutions/bmc-helix-itsm.html
https://dev.blogs.bmc.com/it-solutions/truesight-orchestration.html
https://dev.blogs.bmc.com/it-solutions/control-m.html
https://dev.blogs.bmc.com/it-solutions/bmc-helix-platform.html


Hopefully, through this blog it is clear that as technology advances, IT leaders are more easily able
to evolve their Dev/Ops capabilities into a single, integrated approach. This means IT can streamline
time to market as well as focus developer efforts on delivering rapid outcomes. Additionally, this can
all be done while ensuring risk and compliance policies are fully met. Even further, with Dev/Ops
integrated in this way, Developers are then free to use their preferred development tools and
minimize duplication of effort in multiple platforms. Once defined and prioritized, implementing the
Dev/Ops the use cases I’ve reviewed here can be done leveraging existing integration to help
reduce the manual, often tedious work required to maintain data. Finally, by arriving at this
integrated Dev/Ops approach, your development and operations teams can work more seamlessly
and a much faster pace.

If your organization could use assistance with planning and transitioning to a better integration of
Dev/Ops, please fill out our form to be contacted by a Consulting expert to discuss your needs.

https://dev.blogs.bmc.com/forms/contact-customer-success-services.html

